Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 45(11): 7841-7859, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37490144

ABSTRACT

The increasing population in urban areas in the last decades requires an effort to understand the geochemistry of contaminant elements in urban soil. Topsoil plays a crucial role in the exposure of Potentially Toxic Elements (PTEs) to humans through ingestion, dermal contact, and inhalation. In Chile, the last census revealed that 88.6% of people live in cities or towns and only 11.4% in rural areas. This study presents the first systematic geochemical survey of urban soil in the city of Valdivia, in the South of Chile. Topsoil samples (0-10 cm depth) were collected in less disturbed locations within the city at 130 sampling sites using a grid of 0.25 km2 squares covering a total area of approximately 30 km2. The concentrations of Al, Fe, Na, Ca, Mg, K, Ti, Be, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Sn, Cd, Se, Pb and Hg were measured. The results showed that high concentrations of Cu, V, Zn and Pb are located mainly in the city's northern area and exceed international soil quality legislation for agricultural use. Data processing comprised plotting of individual spatial distribution maps and the use of a combination of multivariate statistical methods. Hierarchical cluster analysis and principal component analysis identified three element associations. The two element groups V-Al-Ti-Fe-Cr-Co-Mn-Be-Ni and Ca-Na-K-As-Mg are interpreted as a dominant lithological origin related to the most pristine soil conditions in less populated areas. By contrast, the Sn-Pb-Zn-Mo-(Cu-Hg) association presents a significant correlation with urbanization indicators, including vehicular traffic and industrial activities developed since the end of the nineteenth century in Valdivia.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Humans , Soil , Metals, Heavy/analysis , Environmental Monitoring/methods , Chile , Lead/analysis , Soil Pollutants/analysis , Mercury/analysis , Risk Assessment
2.
Sci Rep ; 11(1): 13057, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34158516

ABSTRACT

The weathering front is the boundary beneath Earth's surface where pristine rock is converted into weathered rock. It is the base of the "critical zone", in which the lithosphere, biosphere, and atmosphere interact. Typically, this front is located no more than 20 m deep in granitoid rock in humid climate zones. Its depth and the degree of rock weathering are commonly linked to oxygen transport and fluid flow. By drilling into fractured igneous rock in the semi-arid climate zone of the Coastal Cordillera in Chile we found multiple weathering fronts of which the deepest is 76 m beneath the surface. Rock is weathered to varying degrees, contains core stones, and strongly altered zones featuring intensive iron oxidation and high porosity. Geophysical borehole measurements and chemical weathering indicators reveal more intense weathering where fracturing is extensive, and porosity is higher than in bedrock. Only the top 10 m feature a continuous weathering gradient towards the surface. We suggest that tectonic preconditioning by fracturing provided transport pathways for oxygen to greater depths, inducing porosity by oxidation. Porosity was preserved throughout the weathering process, as secondary minerals were barely formed due to the low fluid flow.

SELECTION OF CITATIONS
SEARCH DETAIL
...