Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Chempluschem ; 86(8): 1097-1105, 2021 08.
Article in English | MEDLINE | ID: mdl-34251758

ABSTRACT

Alkylammonium cation affinities of 64 nitrogen-containing organobases, as well as the respective proton transfer processes from the alkylammonium cations to the base, have been computed in the gas phase by using DFT methods. The guanidine bases show the highest proton transfer values (191.9-233 kJ mol-1 ) whereas the cis-2,2'-biimidazole presents the largest affinity towards the alkylammonium cations (>200 kJ mol-1 ) values. The resulting data have been compared with the experimentally reported proton affinities of the studied nitrogen-containing organobases revealing that the propensity of an organobase for the proton transfer process increases linearly with its proton affinity. This work can provide a tool for designing senors for bioactive compounds containing amino groups that are protonated at physiological pH.

2.
Magn Reson Chem ; 59(4): 423-438, 2021 04.
Article in English | MEDLINE | ID: mdl-33464666

ABSTRACT

The 1 H, 13 C, 15 N, and 19 F nuclear magnetic resonance (NMR) spectra of 11 2,5-diaryl-2,4-dihydro-3H-1,2,4-triazol-3-ones have been acquired in DMSO-d6 solution and the 13 C, 15 N, and 19 F NMR spectra have also been acquired in the solid state (solid-state nuclear magnetic resonance [SSNMR] and magic angle spinning [MAS]). The X-ray structures of Compounds 3, 5, and 6 have been determined by X-ray diffraction. Theoretical calculations at the gauge-independent atomic orbital (GIAO)/B3LYP/6-311++G(d,p) level have provided a set of 321 chemical shifts that were compared with 310 experimental values in DMSO-d6 . To obtain good agreements, some effects need to be included. The SSNMR chemical shifts have been compared with gauge-including projector-augmented wave (GIPAW) calculations and with the heavy atom-light atom (HALA) effects.

3.
J Org Chem ; 85(6): 4565-4573, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32077701

ABSTRACT

By virtue of its alkylidenecyclopropane moiety, 2-(cyclopropylidenemethyl)benzaldehyde reacts with a range of amines and thiols under Lewis acid catalysis. These reactions yield 1,3-bis(arylamino) and 1,3-bis(arylthio and alkylthio)indanes, respectively, which are spirolinked to the cyclopropane ring at carbon 2. The reaction mechanism, and the peculiar contribution of the cyclopropane ring, have been scrutinized via DFT calculations.

4.
J Org Chem ; 84(12): 8140-8150, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31136178

ABSTRACT

C-Alkoxycarbonyl- C-phenyl- N-aryl ketenimines bearing 1,3-dithiolan-2-yl or 1,3-dithian-2-yl substituents at ortho position of the C-phenyl ring, respectively, transform into isoquinoline-1-thiones and quinolin-4-ones under thermal treatment in toluene solution. The formation of isoquinolinethiones involves a rare degradation of the 1,3-dithiolane ring, whereas, in contrast, the 1,3-dithiane ring remains intact during the reaction course leading to quinolin-4-ones. Computational density functional theory results support that the kinetically favorable mechanism for the formation of isoquinoline-1-thiones proceeds through a [1,5]-hydride shift/6π-electrocyclization cascade, followed by a thiirane extrusion process. Alternative mechanistic paths showing interesting electronic reorganization processes have been also scrutinized but resulted not competitive on energetic grounds.

5.
PLoS One ; 14(3): e0213302, 2019.
Article in English | MEDLINE | ID: mdl-30849103

ABSTRACT

In this article we introduce the software SimKinet, a free tool specifically designed to solve systems of differential equations without any programming skill. The underlying method is the so-called Network Simulation Method, which designs and solves an electrical network equivalent to the mathematical problem. SimKinet is versatile, fast, presenting a real user-friendly interface, and can be employed for both educational and researching purposes. It is particularly useful in the first courses of different scientific degrees, mainly Chemistry and Physics, especially when facing non-analytic or complex-dynamics problems. Moreover, SimKinet would help students to understand fundamental concepts, being an opportunity to improve instruction in Chemistry, Mathematics, Physics and other Sciences courses, with no need of advanced knowledge in differential equations. The potency of SimKinet is demonstrated via two applications in chemical kinetics: the photochemical destruction of stratospheric ozone and the chaotic dynamics of the peroxidase-oxidase reaction.


Subject(s)
Chemistry, Physical/education , Computer Simulation , Electricity , Mathematics/education , Models, Theoretical , Software , Students/statistics & numerical data , Humans , Kinetics
6.
J Org Chem ; 83(22): 14022-14035, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30352148

ABSTRACT

Macrocyclic bis(thioureas) derived from 2,2'-biphenyl and binaphthyl skeletons have been synthesized by reaction of 2,2'-diaminobiaryl and 2,2'-bis(isothiocyanato)biaryl derivatives. The splitting of these bis(thioureas) into two units of the respective cyclic monothioureas has been monitored by NMR, shedding some light on the factors that control these processes. Additionally, a computational study revealed up to three mechanistic paths for the conversion of the 2,2'-biphenyl-derived bis(thiourea) into the corresponding monothiourea. The proposed mechanisms account for the participation of a molecule of water as an efficient proton-switch as well as for different classes of putative intermediates. The computational study also supports the ability of the thiourea group to participate in a plethora of processes, such as prototropic equilibria, sigmatropic shifts, heteroene and retro-heteroene reactions, and cis ⇆ trans isomerizations.

7.
Beilstein J Org Chem ; 12: 260-70, 2016.
Article in English | MEDLINE | ID: mdl-26977185

ABSTRACT

6-Phenylfulvenes bearing (1,3-dioxolan or dioxan)-2-yl substituents at ortho position convert into mixtures of 4- and 9-(hydroxy)alkoxy-substituted benz[f]indenes as result of cascade processes initiated by a thermally activated hydrogen shift. Structurally related fulvenes with non-cyclic acetalic units afforded mixtures of 4- and 9-alkoxybenz[f]indenes under similar thermal conditions. Mechanistic paths promoted by an initial [1,4]-, [1,5]-, [1,7]- or [1,9]-H shift are conceivable for explaining these conversions. Deuterium labelling experiments exclude the [1,4]-hydride shift as the first step. A computational study scrutinized the reaction channels of these tandem conversions starting by [1,5]-, [1,7]- and [1,9]-H shifts, revealing that this first step is the rate-determining one and that the [1,9]-H shift is the one with the lowest energy barrier.

8.
Phys Chem Chem Phys ; 16(46): 25409-20, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25342168

ABSTRACT

The kinetic-thermodynamic switching point of a multistep process, whose reaction mechanism has been elucidated by DFT calculations, can be calculated by means of an efficient model based on the Network Simulation Method (NSM). This method can solve, fast and effectively, a difficult system of differential equations derived from a complex kinetic scheme by establishing a formal equivalence between the chemical system and an electrical network. The NSM employs very short simulation times to determine the dependence of the switching time on the temperature, a fundamental topic to take control over the product composition which has not been treated exhaustively so far, and that could be applied for synthetic purposes avoiding laborious and costly experimental trials.

9.
Chemistry ; 19(47): 16093-103, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24123192

ABSTRACT

A series of 2-(1,3-dioxolan-2-yl)phenylallenes that contained a range of substituents (alkyl, aryl, phosphinyl, alkoxycarbonyl, sulfonyl) at the cumulenic C3 position were prepared by using a diverse range of synthetic strategies and converted into their respective 1-(2-hydroxy)-ethoxy-2-substituted naphthalenes by smooth thermal activation in toluene solution. Electron-withdrawing groups at the C3 position accelerated these tandem processes, which consisted of 1) an initial hydride-like [1,5]-H shift of the acetalic H atom onto the central cumulene carbon atom; 2) a subsequent 6π-electrocyclic ring-closure of the resulting reactive ortho-xylylenes; and 3) a final aromatization step with concomitant ring-opening of the 1,3-dioxolane fragment. If the 1,3-dioxolane ring of the starting allenes was replaced by a dimethoxymethyl group, the reactions led to mixtures of two disubstituted naphthalenes, which were formed by the migration of either the acetalic H atom or the methoxy group, with the latter migration occurring to a lesser extent. Two of the final 1,2-disubstituted naphthalenes were converted into their corresponding naphtho-fused dioxaphosphepine or dioxepinone through an intramolecular transesterification reaction. A DFT computational study accounted for the beneficial influence of the 1,3-dioxolane fragment on the carbon atom from which the H-shift took place and also of the electron-withdrawing substituents on the allene terminus. Remarkably, in the processes that contained a sulfonyl substituent, the conrotatory 6π-electrocyclization step was of lower activation energy than the alternative disrotatory mode.

10.
Org Biomol Chem ; 8(20): 4690-700, 2010 Oct 21.
Article in English | MEDLINE | ID: mdl-20820654

ABSTRACT

The ability of triarylmethane and diarylmethane fragments to behave as hydride donors participating in thermal [1,5]-H shift/6π-ERC tandem processes involving ketenimine and carbodiimide functions is disclosed. C-Alkyl-C-phenyl ketenimines N-substituted by a triarylmethane substructure convert into a variety of 3,3,4,4-tetrasubstituted-3,4-dihydroquinolines, as structurally related carbodiimides transform into 3,4,4-trisubstituted-3,4-dihydroquinazolines via transient ortho-azaxylylenes. The first step of these one-pot conversions, the [1,5]-H shift, is considered to be a hydride migration on the basis of the known hydricity of the tri(di)arylmethane fragment and the electrophilicity of the central heterocumulenic carbon atom, whereas the final electrocyclization involves the formation of a sterically congested C-C or C-N bond. In the cases of C,C-diphenyl substituted triarylmethane-ketenimines the usual 6π-ERC becomes prohibited by the presence of two phenyl rings at each end of the azatrienic system. This situation opens new reaction channels: (a) following the initial hydride shift, the tandem sequence continues with an alternative electrocyclization mode to give 9,10-dihydroacridines, (b) the full sequence is initiated by a rare 1,5 migration of an electron-rich aryl group, followed by a 6π-ERC which leads to 2-aryl-3,4-dihydroquinolines, or (c) a different [1,5]-H shift/6π-ERC sequence involving the initial migration of a hydrogen atom from a methyl group at the ortho position to the nitrogen atom of the ketenimine function. Diarylmethane-ketenimines bearing a methyl group at the benzylic carbon atom experience a tandem double [1,5]-H shift, the first one being the usual benzylic hydride transfer whereas the second one involves the methyl group at the initial benzylic carbon atom, the reaction products being 2-aminostyrenes. Diarylmethane-ketenimines lacking such a methyl group convert into 3,4-dihydroquinolines by the habitual tandem [1,5]-H shift/6π-ERC processes.

11.
J Org Chem ; 75(11): 3737-50, 2010 Jun 04.
Article in English | MEDLINE | ID: mdl-20462229

ABSTRACT

Under thermal activation in solution, N-[2-(1,3-oxathiolan-2-yl)]phenyl ketenimines and carbodiimides were converted into 2,1-benzisothiazol-3-ones bearing a pendant N-styryl or imidoyl fragment, respectively. These processes should occur with the concomitant formation of ethylene as result of the fragmentation of the 1,3-oxathiolane ring. The conversions of ketenimines took place under softer thermal conditions, toluene 110 degrees C, than those of carbodiimides, o-xylene 160 degrees C. A computational DFT study unveiled the mechanistic course of these transformations, rare tandem processes consisting of an initial 1,5-hydride shift of the acetalic hydrogen atom to the central carbon atom of the heterocumulene function leading to the respective o-azaxylylene. This transient intermediate then converts, in a single step, into ethylene and the experimentally isolated benzisothiazolone. This latter stage of the mechanism is rather peculiar, combining a 1,5-cyclization by S-N bond formation, aromaticity recovery at the benzene nucleus, and the fragmentation of the oxathiolane framework originating a new carbonyl group. It can be related with a vinylogous retro-ene reaction and shows pseudopericyclic characteristics. The computations also revealed that the alternative 6pi electrocyclization of the transient o-azaxylylenes cannot compete, on kinetic and thermodynamic grounds, with the experimentally observed reaction channel. The two alternative reaction paths of a number of ketenimines and carbodiimides were computationally scrutinized, the results being in accord with the experimental outcomes. In addition, sulfur extrusion from the benzisothiazolones by the action of triphenylphosphine under two different reaction conditions led to three different types of heterocyclic products, 4(3H)-quinolones, quinolino[2,1-b]quinazolin-5,12-diones, and dibenzo[b,f][1,5]diazocin-6,12-diones, whose formation is explained by the initial formation of an intermediate imidoylketene. This reactive species could be trapped by a nucleophilic solvent, ethanol.


Subject(s)
Carbodiimides/chemistry , Ethylenes/chemistry , Imines/chemistry , Ketones/chemistry , Thiophenes/chemistry , Cyclization , Heterocyclic Compounds , Hot Temperature , Models, Chemical , Thiazoles
12.
Chemistry ; 16(12): 3728-35, 2010 Mar 22.
Article in English | MEDLINE | ID: mdl-20162640

ABSTRACT

A series of N,P,P-trisubstituted aminophosphanes react with diphenylcyclopropenone to afford an easily separable mixture of two diastereomeric alpha,beta-diphenyl-beta-phosphinoyl carboxamides in good yields. X-ray crystal structures reveal that these compounds associate into dimers, formed from two enantiomeric units linked by two bifurcated hydrogen bonds, whereby the oxygen atom of the phosphoryl group acts as a dual acceptor for the vicinal NH and CH of a carbonyl group of a neighbouring molecule. Studies on the interconversion between diastereomeric phosphinoyl carboxamides in basic solution show that the thermodynamically most stable isomer depends on the nature of the substituent at the nitrogen atom. Simple computational calculations explain this phenomenon.

13.
Org Lett ; 11(6): 1365-8, 2009 Mar 19.
Article in English | MEDLINE | ID: mdl-19245248

ABSTRACT

A rare one-pot reaction, a tandem [1,5]-H shift/1,5 electrocyclization/[3 + 2] cycloreversion process, leading from N-[2-(1,3-oxathiolan-2-yl)]phenyl ketenimines to 1-(beta-styryl)-2,1-benzisothiazol-3-ones and ethylene, is disclosed and mechanistically unraveled by means of a computational DFT study. The two latter stages of the tandem process are calculated to occur in a single mechanistic step via a transition structure of pseudopericyclic characteristics.

14.
J Org Chem ; 73(3): 963-73, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18173287

ABSTRACT

The hetero-Diels-Alder reactions of 4-alkenylthiazoles with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) lead to new heteropolycyclic systems in excellent yields and high levels of stereocontrol through an exclusively suprafacial approach. 4-Alkenylthiazoles with a stereogenic center placed at the alkenylic substituent react with PTAD giving the corresponding chiral cycloadducts in moderate diastereomeric excesses. The stereochemical course is dominated by the steric interactions at the two diastereomeric transition states. A computational study of these processes with structurally simpler reagents has been carried out. A concerted pathway via a highly asynchronous transition state is preferred for 2-unsubstituted 4-vinyl and 4-styrylthiazoles. However, two alternative and equally likely pathways, concerted and stepwise, have been found to be followed by 2-methyl- or 2-phenyl-substituted 4-styrylthiazoles. The concerted pathway features a highly asynchronous transition state. For the stepwise pathway, the rate-determining step is the first one, as the energy barrier for the second step is virtually nonexistent.

15.
J Org Chem ; 72(15): 5863-6, 2007 Jul 20.
Article in English | MEDLINE | ID: mdl-17583957

ABSTRACT

Bis(ketenimines), in which the two heterocumulenic functions are placed in close proximity on a carbon skeleton to allow their mutual interaction, show a rich and not easily predictable chemistry. Intramolecular [2 + 2] or [4 + 2] cycloadditions are, respectively, observed when both ketenimine functions are supported on either ortho-benzylic or 2,2'-biphenylenic scaffolds. In addition, nitrogen-to-carbon [1,3] and [1,5] shifts of arylmethyl groups in N-arylmethyl-C,C-diphenyl ketenimines are also disclosed.

16.
J Org Chem ; 72(6): 2097-105, 2007 Mar 16.
Article in English | MEDLINE | ID: mdl-17316049

ABSTRACT

Somewhat unexpectedly, the computed highest occupied molecular orbital (HOMO) energies of some 4-alkenylthiazoles afforded values close to those calculated for the Danishefsky-Kitahara and Rawal dienes. In fact, 4-alkenylthiazoles behave as all-carbon dienes in Diels-Alder reactions with the participation of the formal C-C double bond of the thiazole ring and the side-chain double bond. The reactions with N-substituted maleimides, maleic anhydride, and naphthoquinone take place with high levels of stereocontrol to give the corresponding endo-cycloadducts in good to excellent yields. Depending on the dienophile, the cycloadduct further transforms under the reaction conditions through either a 1,3-hydrogen shift, dehydrogenation, or an ene reaction or Michael addition with another molecule of dienophile. These unprecedented results open new synthetic perspectives for the functionalization of the thiazole ring.


Subject(s)
Thiazoles/chemistry , Alkadienes , Maleic Anhydrides/chemistry , Maleimides/chemistry , Models, Molecular , Naphthoquinones/chemistry
17.
Org Lett ; 8(24): 5645-8, 2006 Nov 23.
Article in English | MEDLINE | ID: mdl-17107093

ABSTRACT

2-monosubstituted 1,3-dioxolanes and dithiolanes act as hydride-releasing fragments, transferring intramolecularly their acetalic H atom to the central carbon of ketenimine functions. The presumed products of these migrations, o-quinomethanimines, undergo in situ 6pi-electrocyclization. A computational study supports this mechanism and the hydride-shift character of the first step. Carbodiimides were also suitable substrates, although less reactive. [reaction: see text].

18.
J Org Chem ; 71(21): 8126-39, 2006 Oct 13.
Article in English | MEDLINE | ID: mdl-17025302

ABSTRACT

N-(2-X-Carbonyl)phenyl ketenimines undergo, under mild thermal conditions, [1,5]-migration of the X group from the carbonyl carbon to the electron-deficient central carbon atom of the ketenimine fragment, followed by a 6pi-electrocyclic ring closure of the resulting ketene to provide 2-X-substituted quinolin-4(3H)-ones in a sequential one-pot manner. The X groups tested are electron-donor groups, such as alkylthio, arylthio, arylseleno, aryloxy, and amino. When involving alkylthio, arylthio, and arylseleno groups, the complete transformation takes place in refluxing toluene, whereas for aryloxy and amino groups the starting ketenimines must be heated at 230 degrees C in a sealed tube in the absence of solvent. The mechanism for the conversion of these ketenimines into quinolin-4(3H)-ones has been studied by ab initio and DFT calculations, using as model compounds N-(2-X-carbonyl)vinyl ketenimines bearing different X groups (X = F, Cl, OH, SH, NH(2), and PH(2)) converting into 4(3H)-pyridones. This computational study afforded two general reaction pathways for the first step of the sequence, the [1,5]-X shift, depending on the nature of X. When X is F, Cl, OH, or SH, the migration occurs in a concerted mode, whereas when X is NH(2) or PH(2), it involves a two-step sequence. The order of migratory aptitudes of the X substituents at the acyl group is predicted to be PH(2) > Cl > SH > NH(2) > F> OH. The second step of the full transformation, the 6pi-electrocyclic ring closure, is calculated to be concerted and with low energy barriers in all the cases. We have included in the calculations an alternative mode of cyclization of the N-(2-X-carbonyl)vinyl ketenimines, the 6pi-electrocyclic ring closure leading to 1,3-oxazines that involves its 1-oxo-5-aza-1,3,5-hexatrienic system. Additionally, the pseudopericyclic topology of the transition states for some of the [1,5]-X migrations (X = F, Cl, OH, SH), for the 6pi-electrocyclization of the ketene intermediates to the 4(3H)-pyridones, and for the 6pi-electrocyclization of the starting ketenimines into 1,3-oxazines could be established on the basis of their geometries, natural bond orbital analyses, and magnetic properties. The calculations predict that the 4(3H)-pyridones are the thermodynamically controlled products and that the 1,3-oxazines should be the kinetically controlled ones.

19.
J Org Chem ; 71(14): 5328-39, 2006 Jul 07.
Article in English | MEDLINE | ID: mdl-16808523

ABSTRACT

The reaction of 2-(phenylamino)- and 2-(dimethylamino)thiazoles with dimethyl acetylenedicarboxylate led unexpectedly to dimethyl 6-(phenylamino)- and 6-(dimethylamino)-3,4-pyridinedicarboxylates. Those compounds reasonably result from a sequence of reactions initiated by a [2 + 2] cycloaddition of the alkyne to the formal C=C of the thiazole ring. These pyridines were obtained in nearly all the cases assayed as the exclusive reaction products under rather mild conditions and in fair to good yields. In contrast, the regioisomeric 2-amino-3,4-pyridinedicarboxylates, which would result from a [4 + 2] cycloaddition followed by sulfur extrusion, were only obtained in one particular case. The two reaction paths leading alternatively to both regioisomers were investigated computationally. The respective [2 + 2] and [4 + 2] cycloadducts were found to be formed stepwise from a common dipolar intermediate. Notably, the step following the [2 + 2] cycloaddition (i.e., the ring opening of the fused cyclobutene intermediate to give an all-cis 1,3-thiazepine) was found to take place in a disrotatory mode. Although geometric constraints and electronic factors may reduce the energy for the disrotation, the implication of the fused five-membered ring in the electronic reorganization leading to the 1,3-thiazepine is determinant. In this sense, this step could be regarded also as a thermally allowed six-electron five-center disrotatory electrocyclic ring opening. The proposed mechanism was experimentally supported by the isolation of several intermediates and other experimental facts.

20.
Org Lett ; 7(23): 5281-4, 2005 Nov 10.
Article in English | MEDLINE | ID: mdl-16268558

ABSTRACT

[reaction: see text] N-[2-(Alkyl- or arylthio)carbonyl]phenyl ketenimines undergo cyclization under mild thermal conditions to afford 2-alkyl(aryl)thio-3H-quinolin-4-ones by means of the 1,5-migration of the alkyl(aryl)thio group from the carbonyl carbon to the central carbon atom of the ketenimine fragment followed by the 6pi-electrocyclization of the resulting vinyliminoketene. These 1,5-migration and electrocyclization processes occur via transition states whose pseudopericyclic characteristics have been established on the basis of their magnetic properties, geometries, and NBO analyses.

SELECTION OF CITATIONS
SEARCH DETAIL
...