Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Mol Cell ; 82(15): 2871-2884.e6, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35809572

ABSTRACT

We have previously described polyglutamine-binding protein 1 (PQBP1) as an adapter required for the cyclic GMP-AMP synthase (cGAS)-mediated innate response to the human immunodeficiency virus 1 (HIV-1) and other lentiviruses. Cytoplasmic HIV-1 DNA is a transient and low-abundance pathogen-associated molecular pattern (PAMP), and the mechanism for its detection and verification is not fully understood. Here, we show a two-factor authentication strategy by the innate surveillance machinery to selectively respond to the low concentration of HIV-1 DNA, while distinguishing these species from extranuclear DNA molecules. We find that, upon HIV-1 infection, PQBP1 decorates the intact viral capsid, and this serves as a primary verification step for the viral nucleic acid cargo. As reverse transcription and capsid disassembly initiate, cGAS is recruited to the capsid in a PQBP1-dependent manner. This positions cGAS at the site of PAMP generation and sanctions its response to a low-abundance DNA PAMP.


Subject(s)
HIV-1 , Capsid/metabolism , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HIV-1/genetics , Humans , Immunity, Innate , Nucleotidyltransferases/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism
2.
Nat Struct Mol Biol ; 27(10): 875-885, 2020 10.
Article in English | MEDLINE | ID: mdl-32778820

ABSTRACT

Suppressing cellular signal transducers of transcription 2 (STAT2) is a common strategy that viruses use to establish infections, yet the detailed mechanism remains elusive, owing to a lack of structural information about the viral-cellular complex involved. Here, we report the cryo-EM and crystal structures of human STAT2 (hSTAT2) in complex with the non-structural protein 5 (NS5) of Zika virus (ZIKV) and dengue virus (DENV), revealing two-pronged interactions between NS5 and hSTAT2. First, the NS5 methyltransferase and RNA-dependent RNA polymerase (RdRP) domains form a conserved interdomain cleft harboring the coiled-coil domain of hSTAT2, thus preventing association of hSTAT2 with interferon regulatory factor 9. Second, the NS5 RdRP domain also binds the amino-terminal domain of hSTAT2. Disruption of these ZIKV NS5-hSTAT2 interactions compromised NS5-mediated hSTAT2 degradation and interferon suppression, and viral infection under interferon-competent conditions. Taken together, these results clarify the mechanism underlying the functional antagonism of STAT2 by both ZIKV and DENV.


Subject(s)
STAT2 Transcription Factor/chemistry , STAT2 Transcription Factor/metabolism , Viral Nonstructural Proteins/chemistry , Cryoelectron Microscopy , Crystallography, X-Ray , Cytoplasm/metabolism , HEK293 Cells , Host-Pathogen Interactions , Humans , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Models, Molecular , Protein Conformation , STAT2 Transcription Factor/genetics , Viral Nonstructural Proteins/metabolism , Zika Virus Infection/virology
3.
J Virol ; 92(6)2018 03 15.
Article in English | MEDLINE | ID: mdl-29321315

ABSTRACT

Paramyxovirus V proteins are known antagonists of the RIG-I-like receptor (RLR)-mediated interferon induction pathway, interacting with and inhibiting the RLR MDA5. We report interactions between the Nipah virus V protein and both RIG-I regulatory protein TRIM25 and RIG-I. We also observed interactions between these host proteins and the V proteins of measles virus, Sendai virus, and parainfluenza virus. These interactions are mediated by the conserved C-terminal domain of the V protein, which binds to the tandem caspase activation and recruitment domains (CARDs) of RIG-I (the region of TRIM25 ubiquitination) and to the SPRY domain of TRIM25, which mediates TRIM25 interaction with the RIG-I CARDs. Furthermore, we show that V interaction with TRIM25 and RIG-I prevents TRIM25-mediated ubiquitination of RIG-I and disrupts downstream RIG-I signaling to the mitochondrial antiviral signaling protein. This is a novel mechanism for innate immune inhibition by paramyxovirus V proteins, distinct from other known V protein functions such as MDA5 and STAT1 antagonism.IMPORTANCE The host RIG-I signaling pathway is a key early obstacle to paramyxovirus infection, as it results in rapid induction of an antiviral response. This study shows that paramyxovirus V proteins interact with and inhibit the activation of RIG-I, thereby interrupting the antiviral signaling pathway and facilitating virus replication.


Subject(s)
DEAD Box Protein 58/metabolism , Paramyxoviridae Infections/metabolism , Paramyxoviridae/physiology , Signal Transduction , Transcription Factors/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Viral Proteins/metabolism , Virus Replication , A549 Cells , Animals , DEAD Box Protein 58/genetics , Dogs , HeLa Cells , Humans , Madin Darby Canine Kidney Cells , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Paramyxoviridae Infections/genetics , Receptors, Immunologic , Transcription Factors/genetics , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination/genetics , Viral Proteins/genetics
4.
PLoS Pathog ; 14(1): e1006838, 2018 01.
Article in English | MEDLINE | ID: mdl-29370303

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel human coronavirus that emerged in 2012, causing severe pneumonia and acute respiratory distress syndrome (ARDS), with a case fatality rate of ~36%. When expressed in isolation, CoV accessory proteins have been shown to interfere with innate antiviral signaling pathways. However, there is limited information on the specific contribution of MERS-CoV accessory protein 4b to the repression of the innate antiviral response in the context of infection. We found that MERS-CoV 4b was required to prevent a robust NF-κB dependent response during infection. In wild-type virus infected cells, 4b localized to the nucleus, while NF-κB was retained in the cytoplasm. In contrast, in the absence of 4b or in the presence of cytoplasmic 4b mutants lacking a nuclear localization signal (NLS), NF-κB was translocated to the nucleus leading to the expression of pro-inflammatory cytokines. This indicates that NF-κB repression required the nuclear import of 4b mediated by a specific NLS. Interestingly, we also found that both in isolation and during infection, 4b interacted with α-karyopherin proteins in an NLS-dependent manner. In particular, 4b had a strong preference for binding karyopherin-α4 (KPNA4), which is known to translocate the NF-κB protein complex into the nucleus. Binding of 4b to KPNA4 during infection inhibited its interaction with NF-κB-p65 subunit. Thereby we propose a model where 4b outcompetes NF-κB for KPNA4 binding and translocation into the nucleus as a mechanism of interference with the NF-κB-mediated innate immune response.


Subject(s)
Coronavirus Infections/immunology , Immune Evasion , Immunity, Innate , Middle East Respiratory Syndrome Coronavirus/physiology , NF-kappa B/physiology , Viral Proteins/physiology , Animals , Cells, Cultured , Coronavirus Infections/virology , Cricetinae , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/physiology , Middle East Respiratory Syndrome Coronavirus/immunology , NF-kappa B/metabolism
5.
mBio ; 8(2)2017 04 04.
Article in English | MEDLINE | ID: mdl-28377530

ABSTRACT

Ebola virus (EBOV) protein VP35 inhibits production of interferon alpha/beta (IFN) by blocking RIG-I-like receptor signaling pathways, thereby promoting virus replication and pathogenesis. A high-throughput screening assay, developed to identify compounds that either inhibit or bypass VP35 IFN-antagonist function, identified five DNA intercalators as reproducible hits from a library of bioactive compounds. Four, including doxorubicin and daunorubicin, are anthracycline antibiotics that inhibit topoisomerase II and are used clinically as chemotherapeutic drugs. These compounds were demonstrated to induce IFN responses in an ATM kinase-dependent manner and to also trigger the DNA-sensing cGAS-STING pathway of IFN induction. These compounds also suppress EBOV replication in vitro and induce IFN in the presence of IFN-antagonist proteins from multiple negative-sense RNA viruses. These findings provide new insights into signaling pathways activated by important chemotherapy drugs and identify a novel therapeutic approach for IFN induction that may be exploited to inhibit RNA virus replication.IMPORTANCE Ebola virus and other emerging RNA viruses are significant but unpredictable public health threats. Therapeutic approaches with broad-spectrum activity could provide an attractive response to such infections. We describe a novel assay that can identify small molecules that overcome Ebola virus-encoded innate immune evasion mechanisms. This assay identified as hits cancer chemotherapeutic drugs, including doxorubicin. Follow-up studies provide new insight into how doxorubicin induces interferon (IFN) responses, revealing activation of both the DNA damage response kinase ATM and the DNA sensor cGAS and its partner signaling protein STING. The studies further demonstrate that the ATM and cGAS-STING pathways of IFN induction are a point of vulnerability not only for Ebola virus but for other RNA viruses as well, because viral innate immune antagonists consistently fail to block these signals. These studies thereby define a novel avenue for therapeutic intervention against emerging RNA viruses.


Subject(s)
Antiviral Agents/pharmacology , DNA Damage/immunology , Ebolavirus/physiology , Immune Evasion/drug effects , Interferons/metabolism , Topoisomerase II Inhibitors/pharmacology , Virus Replication/drug effects , Cell Line , Ebolavirus/immunology , Humans
6.
Nat Microbiol ; 2: 17037, 2017 Mar 27.
Article in English | MEDLINE | ID: mdl-28346446

ABSTRACT

During the last few decades, the global incidence of dengue virus (DENV) has increased dramatically, and it is now endemic in more than 100 countries. To establish a productive infection in humans, DENV uses different strategies to inhibit or avoid the host innate immune system. Several DENV proteins have been shown to strategically target crucial components of the type I interferon system. Here, we report that the DENV NS2B protease cofactor targets the DNA sensor cyclic GMP-AMP synthase (cGAS) for lysosomal degradation to avoid the detection of mitochondrial DNA during infection. Such degradation subsequently results in the inhibition of type I interferon production in the infected cell. Our data demonstrate a mechanism by which cGAS senses cellular damage upon DENV infection.


Subject(s)
DNA, Mitochondrial/physiology , Dengue Virus/genetics , Host-Pathogen Interactions , Nucleotidyltransferases/metabolism , Viral Nonstructural Proteins/metabolism , DNA, Mitochondrial/genetics , Dendritic Cells/virology , Dengue/immunology , Dengue/virology , Dengue Virus/chemistry , Dengue Virus/enzymology , Dengue Virus/immunology , HEK293 Cells , Humans , Immunity, Innate , Interferon Type I/immunology , Membrane Proteins/metabolism , Nucleotidyltransferases/deficiency , Nucleotidyltransferases/genetics , Nucleotidyltransferases/immunology , Signal Transduction , Viral Nonstructural Proteins/genetics
7.
Virus Res ; 209: 56-66, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26221764

ABSTRACT

Programmed cell death is essential to survival of multicellular organisms. Previously restricted to apoptosis, the concept of programmed cell death is now extended to other mechanisms, as programmed necrosis or necroptosis, autophagic cell death, pyroptosis and parthanatos, among others. Viruses have evolved to manipulate and take control over the programmed cell death response, and the infected cell attempts to neutralize viral infections displaying different stress signals and defensive pathways before taking the critical decision of self-destruction. Learning from viruses and their interplay with the host may help us to better understand the complexity of the self-defense death response that when altered might cause disorders as important as cancer. In addition, as the fields of immunotherapy and oncolytic viruses advance as promising novel cancer therapies, the programmed cell death response reemerges as a key point for the success of both therapeutic approaches. In this review we summarize the research of the multimodal cell death response induced by Newcastle disease viruses (NDV), considered nowadays a promising viral oncolytic therapeutic, and how the manipulation of the host programmed cell death response can enhance the NDV antitumor capacity.


Subject(s)
Newcastle disease virus/physiology , Oncolytic Virotherapy/methods , Oncolytic Viruses/physiology , Animals , Apoptosis , Autophagy , Disease Models, Animal , Host-Pathogen Interactions , Humans , Newcastle disease virus/growth & development , Oncolytic Viruses/growth & development
8.
J Virol ; 89(4): 2241-52, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25505067

ABSTRACT

UNLABELLED: Interferon-induced Mx proteins show strong antiviral activity against influenza A viruses (IAVs). We recently demonstrated that the viral nucleoprotein (NP) determines resistance of seasonal and pandemic human influenza viruses to Mx, while avian isolates retain Mx sensitivity. We identified a surface-exposed cluster of amino acids in NP of pandemic A/BM/1/1918 (H1N1), comprising isoleucine-100, proline-283, and tyrosine-313, that is essential for reduced Mx sensitivity in cell culture and in vivo. This cluster has been maintained in all descendant seasonal strains, including A/PR/8/34 (PR/8). Accordingly, two substitutions in the NP of PR/8 [PR/8(mut)] to the Mx-sensitive amino acids (P283L and Y313F) led to attenuation in Mx1-positive mice. Serial lung passages of PR/8(mut) in Mx1 mice resulted in a single exchange of tyrosine to asparagine at position 52 in NP (in close proximity to the amino acid cluster at positions 100, 283, and 313), which partially compensates loss of Mx resistance in PR/8(mut). Intriguingly, the NP of the newly emerged avian-origin H7N9 virus also contains an asparagine at position 52 and shows reduced Mx sensitivity. N52Y substitution in NP results in increased sensitivity of the H7N9 virus to human Mx, indicating that this residue is a determinant of Mx resistance in mammals. Our data strengthen the hypothesis that the human Mx protein represents a potent barrier against zoonotic transmission of avian influenza viruses. However, the H7N9 viruses overcome this restriction by harboring an NP that is less sensitive to Mx-mediated host defense. This might contribute to zoonotic transmission of H7N9 and to the severe to fatal outcome of H7N9 infections in humans. IMPORTANCE: The natural host of influenza A viruses (IAVs) are aquatic birds. Occasionally, these viruses cross the species barrier, as in early 2013 when an avian H7N9 virus infected humans in China. Since then, multiple transmissions of H7N9 viruses to humans have occurred, leaving experts puzzled about molecular causes for such efficient crossing of the species barrier compared to other avian influenza viruses. Mx proteins are known restriction factors preventing influenza virus replication. Unfortunately, some viruses (e.g., human IAV) have developed some resistance, which is associated with specific amino acids in their nucleoproteins, the target of Mx function. Here, we demonstrate that the novel H7N9 bird IAV already carries a nucleoprotein that overcomes the inhibition of viral replication by human MxA. This is the first example of an avian IAV that is naturally less sensitive to Mx-mediated inhibition and might explain why H7N9 viruses transmitted efficiently to humans.


Subject(s)
Immune Evasion , Influenza A Virus, H7N9 Subtype/immunology , Influenza in Birds/virology , Influenza, Human/immunology , Myxovirus Resistance Proteins/immunology , RNA-Binding Proteins/immunology , Viral Core Proteins/immunology , Animals , Birds , Cell Line , China , Humans , Influenza A Virus, H7N9 Subtype/growth & development , Mice, Inbred C57BL , Molecular Sequence Data , Nucleocapsid Proteins , RNA, Viral/genetics , RNA-Binding Proteins/genetics , Sequence Analysis, DNA , Viral Core Proteins/genetics , Zoonoses/transmission , Zoonoses/virology
9.
mBio ; 5(2): e01006-14, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24692634

ABSTRACT

The cytoplasmic helicase RIG-I is an established sensor for viral 5'-triphosphorylated RNA species. Recently, RIG-I was also implicated in the detection of intracellular bacteria. However, little is known about the host cell specificity of this process and the bacterial pathogen-associated molecular pattern (PAMP) that activates RIG-I. Here we show that RNA of Salmonella enterica serovar Typhimurium activates production of beta interferon in a RIG-I-dependent fashion only in nonphagocytic cells. In phagocytic cells, RIG-I is obsolete for detection of Salmonella infection. We further demonstrate that Salmonella mRNA reaches the cytoplasm during infection and is thus accessible for RIG-I. The results from next-generation sequencing analysis of RIG-I-associated RNA suggest that coding bacterial mRNAs represent the activating PAMP. IMPORTANCE S. Typhimurium is a major food-borne pathogen. After fecal-oral transmission, it can infect epithelial cells in the gut as well as immune cells (mainly macrophages, dendritic cells, and M cells). The innate host immune system relies on a growing number of sensors that detect pathogen-associated molecular patterns (PAMPs) to launch a first broad-spectrum response to invading pathogens. Successful detection of a given pathogen depends on colocalization of host sensors and PAMPs as well as potential countermeasures of the pathogen during infection. RIG-I-like helicases were mainly associated with detection of RNA viruses. Our work shows that S. Typhimurium is detected by RIG-I during infection specifically in nonimmune cells.


Subject(s)
DEAD-box RNA Helicases/immunology , Host-Pathogen Interactions , RNA, Bacterial/immunology , RNA, Messenger/immunology , Receptors, Immunologic/immunology , Salmonella typhimurium/immunology , Animals , Cell Line , DEAD Box Protein 58 , DEAD-box RNA Helicases/metabolism , Humans , Interferon-beta/immunology , Interferon-beta/metabolism , Mice , Protein Binding , RNA, Bacterial/metabolism , RNA, Messenger/metabolism , Receptors, Immunologic/metabolism
10.
J Virol ; 88(8): 4572-85, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24478431

ABSTRACT

UNLABELLED: Recognition of viral pathogens by the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family results in the activation of type I interferon (IFN) responses. To avoid this response, most viruses have evolved strategies that target different essential steps in the activation of host innate immunity. In this study, we report that the nonstructural protein NSs of the newly described severe fever with thrombocytopenia syndrome virus (SFTSV) is a potent inhibitor of IFN responses. The SFTSV NSs protein was found to inhibit the activation of the beta interferon (IFN-ß) promoter induced by viral infection and by a RIG-I ligand. Astonishingly, we found that SFTSV NSs interacts with and relocalizes RIG-I, the E3 ubiquitin ligase TRIM25, and TANK-binding kinase 1 (TBK1) into SFTSV NSs-induced cytoplasmic structures. Interestingly, formation of these SFTSV NSs-induced structures occurred in the absence of the Atg7 gene, a gene essential for autophagy. Furthermore, confocal microscopy studies revealed that these SFTSV NSs-induced structures colocalize with Rab5 but not with Golgi apparatus or endoplasmic reticulum markers. Altogether, the data suggest that sequestration of RIG-I signaling molecules into endosome-like structures may be the mechanism used by SFTSV to inhibit IFN responses and point toward a novel mechanism for the suppression of IFN responses. IMPORTANCE: The mechanism by which the newly described SFTSV inhibits host antiviral responses has not yet been fully characterized. In this study, we describe the redistribution of RIG-I signaling components into virus-induced cytoplasmic structures in cells infected with SFTSV. This redistribution correlates with the inhibition of host antiviral responses. Further characterization of the interplay between the viral protein and components of the IFN responses could potentially provide targets for the rational development of therapeutic interventions.


Subject(s)
Bunyaviridae Infections/enzymology , DEAD-box RNA Helicases/metabolism , Endosomes/metabolism , Interferon Type I/immunology , Phlebovirus/metabolism , Viral Nonstructural Proteins/metabolism , Bunyaviridae Infections/genetics , Bunyaviridae Infections/immunology , Bunyaviridae Infections/virology , Cell Line , Cytoplasmic Structures , DEAD Box Protein 58 , DEAD-box RNA Helicases/genetics , Endosomes/genetics , Humans , Interferon Type I/genetics , Phlebovirus/genetics , Promoter Regions, Genetic , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Transport , Receptors, Immunologic , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Tripartite Motif Proteins , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Viral Nonstructural Proteins/genetics
11.
Structure ; 20(12): 2048-61, 2012 Dec 05.
Article in English | MEDLINE | ID: mdl-23063562

ABSTRACT

RIG-I is a cytosolic sensor of viral RNA, comprised of two N-terminal CARDs followed by helicase and C-terminal regulatory domains (helicase-CTD). Viral RNA binds to the helicase-CTD and "exposes" the CARDs for downstream signaling. The role of the second CARD (CARD2) is essential as RIG-I activation requires dephosphorylation of Thr170 followed by ubiquitination at Lys172. Here, we present the solution structure and dynamics of human RIG-I CARD2. Surprisingly, we find that Thr170 is mostly buried. Parallel studies on the phosphomimetic T170E mutant suggest that the loss of function upon Thr170 phosphorylation is likely associated with changes in the CARD1-CARD2 interface that may prevent Lys172 ubiquitination and/or binding to free K63-linked polyubiquitin. We also demonstrate a strong interaction between CARD2 and the helicase-CTD, and show that mutations at the interface result in constitutive activation of RIG-I. Collectively, our data suggests a close interplay between phosphorylation, ubiquitination, and activation of human RIG-I, all mediated by CARD2.


Subject(s)
DEAD-box RNA Helicases/chemistry , Models, Molecular , Amino Acid Substitution , Catalytic Domain , DEAD Box Protein 58 , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , HEK293 Cells , Humans , Interferon-beta/genetics , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Phosphoproteins/chemistry , Phosphorylation , Promoter Regions, Genetic , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Receptors, Immunologic , Surface Properties , Transcriptional Activation , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...