Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Heliyon ; 8(7): e09944, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35874080

ABSTRACT

The aim of our study was to test the hypothesis that administration of Regenerating islet-derived protein 3α (Reg3α), a protein described as having protective effects against oxidative stress and anti-inflammatory activity, could participate in the control of glucose homeostasis and potentially be a new target of interest in the treatment of type 2 diabetes. To that end the recombinant human Reg3α protein was administered for one month in insulin-resistant mice fed high fat diet. We performed glucose and insulin tolerance tests, assayed circulating chemokines in plasma and measured glucose uptake in insulin sensitive tissues. We evidenced an increase in insulin sensitivity during an oral glucose tolerance test in ALF-5755 treated mice vs controls and decreased the pro-inflammatory cytokine C-X-C Motif Chemokine Ligand 5 (CXCL5). We also demonstrated an increase in glucose uptake in skeletal muscle. Finally, correlation studies using human and mouse muscle biopsies showed negative correlation between intramuscular Reg3α mRNA expression (or its murine isoform Reg3γ) and insulin resistance. Thus, we have established the proof of concept that Reg3α could be a novel molecule of interest in the treatment of T2D by increasing insulin sensitivity via a skeletal muscle effect.

3.
Mol Metab ; 61: 101479, 2022 07.
Article in English | MEDLINE | ID: mdl-35339728

ABSTRACT

OBJECTIVES: Glucagon secretion to stimulate hepatic glucose production is the first line of defense against hypoglycemia. This response is triggered by so far incompletely characterized central hypoglycemia-sensing mechanisms, which control autonomous nervous activity and hormone secretion. The objective of this study was to identify novel hypothalamic genes controlling insulin-induced glucagon secretion. METHODS: To obtain new information on the mechanisms of hypothalamic hypoglycemia sensing, we combined genetic and transcriptomic analysis of glucagon response to insulin-induced hypoglycemia in a panel of BXD recombinant inbred mice. RESULTS: We identified two QTLs on chromosome 8 and chromosome 15. We further investigated the role of Irak4 and Cpne8, both located in the QTL on chromosome 15, in C57BL/6J and DBA/2J mice, the BXD mouse parental strains. We found that the poor glucagon response of DBA/2J mice was associated with higher hypothalamic expression of Irak4, which encodes a kinase acting downstream of the interleukin-1 receptor (Il-1R), and of Il-ß when compared with C57BL/6J mice. We showed that intracerebroventricular administration of an Il-1R antagonist in DBA/2J mice restored insulin-induced glucagon secretion; this was associated with increased c-fos expression in the arcuate and paraventricular nuclei of the hypothalamus and with higher activation of both branches of the autonomous nervous system. Whole body inactivation of Cpne8, which encodes a Ca++-dependent regulator of membrane trafficking and exocytosis, however, had no impact on insulin-induced glucagon secretion. CONCLUSIONS: Collectively, our data identify Irak4 as a genetically controlled regulator of hypoglycemia-activated hypothalamic neurons and glucagon secretion.


Subject(s)
Glucagon , Hypoglycemia , Hypothalamus , Interleukin-1 Receptor-Associated Kinases , Animals , Glucagon/metabolism , Hypoglycemia/genetics , Hypoglycemia/metabolism , Hypothalamus/metabolism , Insulin/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred DBA
4.
Mol Metab ; 54: 101355, 2021 12.
Article in English | MEDLINE | ID: mdl-34634522

ABSTRACT

OBJECTIVES: To find plasma biomarkers prognostic of type 2 diabetes, which could also inform on pancreatic ß-cell deregulations or defects in the function of insulin target tissues. METHODS: We conducted a systems biology approach to characterize the plasma lipidomes of C57Bl/6J, DBA/2J, and BALB/cJ mice under different nutritional conditions, as well as their pancreatic islet and liver transcriptomes. We searched for correlations between plasma lipids and tissue gene expression modules. RESULTS: We identified strong correlation between plasma triacylglycerols (TAGs) and islet gene modules that comprise key regulators of glucose- and lipid-regulated insulin secretion and of the insulin signaling pathway, the two top hits were Gck and Abhd6 for negative and positive correlations, respectively. Correlations were also found between sphingomyelins and islet gene modules that overlapped in part with the gene modules correlated with TAGs. In the liver, the gene module most strongly correlated with plasma TAGs was enriched in mRNAs encoding fatty acid and carnitine transporters as well as multiple enzymes of the ß-oxidation pathway. In humans, plasma TAGs also correlated with the expression of several of the same key regulators of insulin secretion and the insulin signaling pathway identified in mice. This cross-species comparative analysis further led to the identification of PITPNC1 as a candidate regulator of glucose-stimulated insulin secretion. CONCLUSION: TAGs emerge as biomarkers of a liver-to-ß-cell axis that links hepatic ß-oxidation to ß-cell functional mass and insulin secretion.


Subject(s)
Insulin-Secreting Cells/metabolism , Triglycerides/metabolism , Animals , Biomarkers/blood , Biomarkers/metabolism , Cells, Cultured , Glucose/metabolism , Humans , Insulin Secretion , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Triglycerides/blood
5.
Mol Metab ; 37: 100993, 2020 07.
Article in English | MEDLINE | ID: mdl-32298772

ABSTRACT

OBJECTIVES: Glucose-stimulated insulin secretion is a critical function in the regulation of glucose homeostasis, and its deregulation is associated with the development of type 2 diabetes. Here, we performed a genetic screen using islets isolated from the BXD panel of advanced recombinant inbred (RI) lines of mice to search for novel regulators of insulin production and secretion. METHODS: Pancreatic islets were isolated from 36 RI BXD lines and insulin secretion was measured following exposure to 2.8 or 16.7 mM glucose with or without exendin-4. Islets from the same RI lines were used for RNA extraction and transcript profiling. Quantitative trait loci (QTL) mapping was performed for each secretion condition and combined with transcriptome data to prioritize candidate regulatory genes within the identified QTL regions. Functional studies were performed by mRNA silencing or overexpression in MIN6B1 cells and by studying mice and islets with beta-cell-specific gene inactivation. RESULTS: Insulin secretion under the 16.7 mM glucose plus exendin-4 condition was mapped significantly to a chromosome 2 QTL. Within this QTL, RNA-Seq data prioritized Crat (carnitine O-acetyl transferase) as a strong candidate regulator of the insulin secretion trait. Silencing Crat expression in MIN6B1 cells reduced insulin content and insulin secretion by ∼30%. Conversely, Crat overexpression enhanced insulin content and secretion by ∼30%. When islets from mice with beta-cell-specific Crat inactivation were exposed to high glucose, they displayed a 30% reduction of insulin content as compared to control islets. We further showed that decreased Crat expression in both MIN6B1 cells and pancreatic islets reduced the oxygen consumption rate in a glucose concentration-dependent manner. CONCLUSIONS: We identified Crat as a regulator of insulin secretion whose action is mediated by an effect on total cellular insulin content; this effect also depends on the genetic background of the RI mouse lines. These data also show that in the presence of the stimulatory conditions used the insulin secretion rate is directly related to the insulin content.


Subject(s)
Carnitine O-Acetyltransferase/genetics , Insulin Secretion/genetics , Insulin-Secreting Cells/metabolism , Animals , Carnitine O-Acetyltransferase/metabolism , Diabetes Mellitus, Type 2/metabolism , Exenatide/metabolism , Genetic Testing/methods , Glucose/metabolism , Insulin/metabolism , Insulin-Secreting Cells/physiology , Islets of Langerhans/metabolism , Male , Mice , Mice, Inbred Strains , Quantitative Trait Loci
6.
Mol Metab ; 35: 100958, 2020 05.
Article in English | MEDLINE | ID: mdl-32244185

ABSTRACT

OBJECTIVES: In the pathogenesis of type 2 diabetes, development of insulin resistance triggers an increase in pancreatic ß-cell insulin secretion capacity and ß-cell number. Failure of this compensatory mechanism is caused by a dedifferentiation of ß-cells, which leads to insufficient insulin secretion and diabetic hyperglycemia. The ß-cell factors that normally protect against dedifferentiation remain poorly defined. Here, through a systems biology approach, we identify the transcription factor Klf6 as a regulator of ß-cell adaptation to metabolic stress. METHODS: We used a ß-cell specific Klf6 knockout mouse model to investigate whether Klf6 may be a potential regulator of ß-cell adaptation to a metabolic stress. RESULTS: We show that inactivation of Klf6 in ß-cells blunts their proliferation induced by the insulin resistance of pregnancy, high-fat high-sucrose feeding, and insulin receptor antagonism. Transcriptomic analysis showed that Klf6 controls the expression of ß-cell proliferation genes and, in the presence of insulin resistance, it prevents the down-expression of genes controlling mature ß-cell identity and the induction of disallowed genes that impair insulin secretion. Its expression also limits the transdifferentiation of ß-cells into α-cells. CONCLUSION: Our study identifies a new transcription factor that protects ß-cells against dedifferentiation, and which may be targeted to prevent diabetes development.


Subject(s)
Cell Dedifferentiation/genetics , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance/genetics , Insulin-Secreting Cells/metabolism , Kruppel-Like Factor 6/genetics , Kruppel-Like Factor 6/metabolism , Animals , Cell Proliferation/genetics , Cell Transdifferentiation , Disease Models, Animal , Female , Gene Expression Regulation , Gene Knockout Techniques , Insulin/metabolism , Insulin Secretion/genetics , Male , Mice , Mice, Knockout , Transcriptome
7.
Vet J ; 197(2): 427-32, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23489848

ABSTRACT

Human inflammatory breast cancer (IBC) and canine inflammatory mammary cancer (IMC) are the most aggressive and fatal types of mammary cancer, and both have a very poor prognosis and low survival rate. Human IBC is characterised by exacerbated angiogenesis, lymphangiogenesis, and lymphangiotropism. Lymphangiotropism is also characteristic of IMC, but microvascular density (MVD) and lymphangiogenesis have not been previously studied in canine IMC. In this study immunohistochemical expression of several angiogenesis-related factors (cyclooxygenase [COX]-2, vascular endothelial growth factors A and D [VEGF-A, VEGF-D], and vascular endothelial growth factor receptor 3 [VEGFR-3]), MVD, lymphatic proliferation index (LPI), and Ki-67 tumour proliferation index (PI) were studied in 21 canine IMC samples, 20 canine high-grade malignant non-IMC mammary tumours (MMTs), and four normal mammary gland samples (NMGs). All mammary neoplasms were histologically categorised as grade III. COX-2 values were also analysed by RT-PCR in seven IMCs, six MMTs and four NMGs. The expressions of COX-2, VEGF-A, and VEGF-D were significantly higher in IMC, MVD and LPI tumours, but not PI. In MMTs, COX-2 immunoexpression was significantly associated with VEGF-A, while in IMCs COX-2 was associated with VEGF-D (lymphangiogenic factor), its receptor VEGFR-3, and LPI. These results suggested that lymphangiogenic pathway stimulation isa specific role of COX-2 in IMC angiogenesis, which justifies the use of COX-2-based targeted palliative therapies in dogs. The exacerbated angiogenesis and lymphangiogenesis and the increased expression of angiogenesis-related factors further support canine IMC as a natural model for the study of human IBC.


Subject(s)
Cyclooxygenase 2/metabolism , Dog Diseases/metabolism , Gene Expression Regulation, Enzymologic/physiology , Inflammation/veterinary , Mammary Neoplasms, Animal/metabolism , Neovascularization, Pathologic/metabolism , Animals , Cyclooxygenase 2/genetics , Dog Diseases/pathology , Dogs , Female , Gene Expression Regulation, Neoplastic/physiology , Lymphangiogenesis/physiology , Mammary Neoplasms, Animal/blood supply , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor D/genetics , Vascular Endothelial Growth Factor D/metabolism , Vascular Endothelial Growth Factor Receptor-3/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...