Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 87(7): 3923-8, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25716802

ABSTRACT

N-Acetyl amino acid racemases (NAAARs) have demonstrated their potential in the enzymatic synthesis of chiral amino acids, molecules of significant biotechnology interest. In order to identify novel activities and to improve these enzymes by engineering approaches, suitable screening methods are necessary. Previous engineering of the NAAAR from Amycolatopsis Ts-1-60 was achieved by relying on an in vivo selection system that linked the viability of an E. coli L-methionine auxotroph to the activity of the improved enzyme. However, this assay was only suitable for the screening of N-acetyl-D-methionine, therefore limiting the potential to evolve this enzyme toward other natural or non-natural acetylated amino acids. Here, we report the optimization and application of a spectrophotometric microtiter-plate-based assay for NAAAR. The assay is based on the detection of the amino acid reaction product formed by hydrolysis of the N-acylated substrate by an L-amino acid acylase and its subsequent oxidation by an FAD-dependent L-amino acid oxidase (L-AAO). Cofactor recycling of the L-AAO leads to the formation of hydrogen peroxide which is easily monitored using horseradish peroxidase (HRP) and o-dianisidine. This method allowed for the determination of the kinetic parameters of NAAAR and led to the identification of N-acetyl-D-naphthylalanine as a novel NAAAR substrate. This robust method is also suitable for the high-throughput screening of NAAAR mutant gene libraries directly from cell lysates.


Subject(s)
Amino Acid Isomerases/analysis , Colorimetry/methods , High-Throughput Screening Assays , Amino Acid Isomerases/genetics , Amino Acid Isomerases/metabolism , Molecular Structure
2.
PLoS One ; 8(12): e82705, 2013.
Article in English | MEDLINE | ID: mdl-24340054

ABSTRACT

Nicotinamide mononucleotide (NMN) deamidase is one of the key enzymes of the bacterial pyridine nucleotide cycle (PNC). It catalyzes the conversion of NMN to nicotinic acid mononucleotide, which is later converted to NAD(+) by entering the Preiss-Handler pathway. However, very few biochemical data are available regarding this enzyme. This paper represents the first complete molecular characterization of a novel NMN deamidase from the halotolerant and alkaliphilic bacterium Oceanobacillus iheyensis (OiPncC). The enzyme was active over a broad pH range, with an optimum at pH 7.4, whilst maintaining 90 % activity at pH 10.0. Surprisingly, the enzyme was quite stable at such basic pH, maintaining 61 % activity after 21 days. As regard temperature, it had an optimum at 65 °C but its stability was better below 50 °C. OiPncC was a Michaelian enzyme towards its only substrate NMN, with a K m value of 0.18 mM and a kcat/K m of 2.1 mM(-1) s(-1). To further our understanding of these enzymes, a complete phylogenetic and structural analysis was carried out taking into account the two Pfam domains usually associated with them (MocF and CinA). This analysis sheds light on the evolution of NMN deamidases, and enables the classification of NMN deamidases into 12 different subgroups, pointing to a novel domain architecture never before described. Using a Logo representation, conserved blocks were determined, providing new insights on the crucial residues involved in the binding and catalysis of both CinA and MocF domains. The analysis of these conserved blocks within new protein sequences could permit the more efficient data curation of incoming NMN deamidases.


Subject(s)
Bacteria/enzymology , Bacterial Proteins/classification , Bacterial Proteins/genetics , Nicotinamidase/classification , Nicotinamidase/genetics , Phylogeny , Amino Acid Sequence , Bacterial Proteins/chemistry , Molecular Sequence Data , Nicotinamidase/chemistry , Protein Structure, Tertiary
3.
PLoS One ; 8(2): e56727, 2013.
Article in English | MEDLINE | ID: mdl-23451075

ABSTRACT

Nicotinamidases catalyze the hydrolysis of nicotinamide to nicotinic acid and ammonia, an important reaction in the NAD(+) salvage pathway. This paper reports a new nicotinamidase from the deep-sea extremely halotolerant and alkaliphilic Oceanobacillus iheyensis HTE831 (OiNIC). The enzyme was active towards nicotinamide and several analogues, including the prodrug pyrazinamide. The enzyme was more nicotinamidase (kcat/Km  = 43.5 mM(-1)s(-1)) than pyrazinamidase (kcat/Km  = 3.2 mM(-1)s(-1)). Mutational analysis was carried out on seven critical amino acids, confirming for the first time the importance of Cys133 and Phe68 residues for increasing pyrazinamidase activity 2.9- and 2.5-fold, respectively. In addition, the change in the fourth residue involved in the ion metal binding (Glu65) was detrimental to pyrazinamidase activity, decreasing it 6-fold. This residue was also involved in a new distinct structural motif DAHXXXDXXHPE described in this paper for Firmicutes nicotinamidases. Phylogenetic analysis revealed that OiNIC is the first nicotinamidase described for the order Bacillales.


Subject(s)
Bacillaceae/enzymology , Nicotinamidase/metabolism , Bacillaceae/genetics , Niacinamide/metabolism , Nicotinamidase/classification , Nicotinamidase/genetics , Phylogeny , Pyrazinamide/metabolism , Substrate Specificity
4.
Biochimie ; 94(11): 2407-15, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22771766

ABSTRACT

Short-chain dehydrogenases/reductases (SDR) constitute one of the largest enzyme superfamilies with over 60,000 non-redundant sequences in the database, many of which need a correct functional assignment. Among them, the gene AAC16202.1 (NCBI) from Rhodobacter capsulatus SB1003 has been assigned in Uniprot both as a sorbitol dehydrogenase (#D5AUY1) and, as an N-acetyl-d-mannosamine dehydrogenase (#O66112), both enzymes being of biotechnological interest. When the gene was overexpressed in Escherichia coli Rosetta (DE3)pLys, the purified enzyme was not active toward N-acetyl-d-mannosamine, whereas it was active toward d-sorbitol and d-fructose. However, the relative activities toward xylitol and l-iditol (0.45 and 6.9%, respectively) were low compared with that toward d-sorbitol. Thus, the enzyme could be considered sorbitol dehydrogenase (SDH) with very low activity toward xylitol, which could increase its biotechnological interest for determining sorbitol without the unspecific cross-determination of added xylitol in food and pharma compositions. The tetrameric enzyme (120 kDa) showed similar catalytic efficiency (2.2 × 10(3) M(-1) s(-1)) to other sorbitol dehydrogenases for d-sorbitol, with an optimum pH of 9.0 and an optimum temperature of 37 °C. The enzyme was also more thermostable than other reported SDH, ammonium sulfate being the best stabilizer in this respect, increasing the melting temperature (T(m)) up to 52.9 °C. The enzyme can also be considered as a new member of the Zn(2+) independent SDH family since no effect on activity was detected in the presence of divalent cations or chelating agents. Finally, its in silico analysis enabled the specific conserved sequence blocks that are the fingerprints of bacterial sorbitol dehydrogenases and mainly located at C-terminal of the protein, to be determined for the first time. This knowledge will facilitate future data curation of present databases and a better functional assignment of newly described sequences.


Subject(s)
L-Iditol 2-Dehydrogenase/genetics , L-Iditol 2-Dehydrogenase/metabolism , Rhodobacter capsulatus/enzymology , Rhodobacter capsulatus/genetics , Amino Acid Sequence , Cloning, Molecular , Computational Biology , Hexosamines/metabolism , Kinetics , L-Iditol 2-Dehydrogenase/chemistry , L-Iditol 2-Dehydrogenase/isolation & purification , Models, Molecular , Molecular Sequence Data , Protein Conformation , Sequence Alignment , Sorbitol/metabolism
5.
Biochimie ; 94(1): 222-30, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22051376

ABSTRACT

N-Acyl-D-Glucosamine 2-epimerase (AGE) catalyzes the reversible epimerization between N-acetyl-D-mannosamine (ManNAc) and N-acetyl-D-glucosamine (GlcNAc). Bacteroides ovatus ATCC 8483 shows 3 putative genes for AGE activity (BACOVA_00274, BACOVA_01795 and BACOVA_01816). The BACOVA_00274 gene encodes an AGE (BoAGE1) with strong similarity to the AGE previously characterized in Bacteroides fragilis. Interestingly, the BACOVA_01816 gene (BoAGE2) shares 57% identity with Anabaena sp. CH1 AGE, but has an extra 27-amino acid tag sequence in the N-terminal. When cloned and expressed in Escherichia coli Rosetta (DE3)pLys, BACOVA_01816 was able to convert ManNAc into GlcNAc and vice versa. It was stable over a broad range of pHs and its activity was enhanced by ATP (20 µM). The incubation with ATP stabilized its structure, raising its melting temperature by about 8 °C. In addition, the catalytic efficiency for ManNAc synthesis was higher than that for GlcNAc synthesis. These characteristics make BoAGE2 a promising biocatalyst for sialic acid production using cheap GlcNAc as starting material. BoAGE2 could be considered a Renin-binding Protein and its interaction with renin was studied for the first time in a prokaryotic AGE. Surprisingly, renin activated BoAGE2, an effect which is contrary to that described for mammalian AGE and unrelated with the unique N-terminal tag, since a mutant without this tag was also activated by renin. When BoAGE2 sequence was compared with other related (real and putative) AGE described in the databases, it was seen that AGE enzymes can be divided in 3 different groups. The relationship between these groups is also discussed.


Subject(s)
Bacteroides/enzymology , Carbohydrate Epimerases/metabolism , Carrier Proteins/metabolism , Amino Acid Sequence , Base Sequence , Carbohydrate Epimerases/chemistry , Carrier Proteins/chemistry , DNA Primers , Electrophoresis, Polyacrylamide Gel , Kinetics , Models, Molecular , Molecular Sequence Data , Polymerase Chain Reaction , Renin/metabolism , Sequence Homology, Amino Acid
6.
Bioresour Technol ; 102(10): 6186-91, 2011 May.
Article in English | MEDLINE | ID: mdl-21376574

ABSTRACT

N-acetyl-D-neuraminic acid aldolase, a key enzyme in the biotechnological production of N-acetyl-D-neuraminic acid (sialic acid) from N-acetyl-D-mannosamine and pyruvate, was immobilized as cross-linked enzyme aggregates (CLEAs) by precipitation with 90% ammonium sulfate and crosslinking with 1% glutaraldehyde. Because dispersion in a reciprocating disruptor (FastPrep) was only able to recover 40% of the activity, improved CLEAs were then prepared by co-aggregation of the enzyme with 10mg/mL bovine serum albumin followed by a sodium borohydride treatment and final disruption by FastPrep (FastPrep-CLEAs). This produced a twofold increase in activity up to 86%, which is a 30% more than that reported for this aldolase in cross-linked inclusion bodies (CLIBs). In addition, these FastPrep-CLEAs presented remarkable biotechnological features for Neu5Ac synthesis, including, good activity and stability at alkaline pHs, a high K(M) for ManNAc (lower for pyruvate) and good operational stability. These results reinforce the practicability of using FastPrep-CLEAs in biocatalysis, thus reducing production costs and favoring reusability.


Subject(s)
Enzymes/metabolism , N-Acetylneuraminic Acid/chemical synthesis , Biotechnology
7.
Appl Environ Microbiol ; 77(7): 2471-8, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21317263

ABSTRACT

N-Acetylneuraminate lyases (NALs) or sialic acid aldolases catalyze the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac) to form pyruvate and N-acetyl-d-mannosamine (ManNAc). In nature, N-acetylneuraminate lyase occurs mainly in pathogens. However, this paper describes how an N-acetylneuraminate lyase was cloned from the human gut commensal Lactobacillus plantarum WCFS1 (LpNAL), overexpressed, purified, and characterized for the first time. This novel enzyme, which reaches a high expression level (215 mg liter(-1) culture), shows similar catalytic efficiency to the best NALs previously described. This homotetrameric enzyme (132 kDa) also shows high stability and activity at alkaline pH (pH > 9) and good temperature stability (60 to 70°C), this last feature being further improved by the presence of stabilizing additives. These characteristics make LpNAL a promising biocatalyst. When its sequence was compared with that of other, related (real and putative) NALs described in the databases, it was seen that NAL enzymes could be divided into four structural groups and three subgroups. The relation of these subgroups with human and other mammalian NALs is also discussed.


Subject(s)
Lactobacillus plantarum/enzymology , Oxo-Acid-Lyases/genetics , Oxo-Acid-Lyases/metabolism , Amino Acid Sequence , Cloning, Molecular , Cluster Analysis , Enzyme Stability , Gene Expression , Hexosamines/metabolism , Humans , Hydrogen-Ion Concentration , Lactobacillus plantarum/genetics , Molecular Sequence Data , Molecular Weight , Neuraminic Acids/metabolism , Oxo-Acid-Lyases/chemistry , Oxo-Acid-Lyases/isolation & purification , Protein Multimerization , Pyruvic Acid/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...