Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 14(11): 711, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37914688

ABSTRACT

Central areolar choroidal dystrophy is an inherited disorder characterized by progressive choriocapillaris atrophy and retinal degeneration and is usually associated with mutations in the PRPH2 gene. We aimed to generate and characterize a mouse model with the p.Arg195Leu mutation previously described in patients. Heterozygous (Prph2WT/KI) and homozygous (Prph2KI/KI) mice were generated using the CRISPR/Cas9 system to introduce the p.Arg195Leu mutation. Retinal function was assessed by electroretinography and optomotor tests at 1, 3, 6, 9, 12, and 20 months of age. The structural integrity of the retinas was evaluated at the same ages using optical coherence tomography. Immunofluorescence and transmission electron microscopy images of the retina were also analyzed. Genetic sequencing confirmed that both Prph2WT/KI and Prph2KI/KI mice presented the p.Arg195Leu mutation. A progressive loss of retinal function was found in both mutant groups, with significantly reduced visual acuity from 3 months of age in Prph2KI/KI mice and from 6 months of age in Prph2WT/KI mice. Decreased amplitudes in the electroretinography responses were observed from 1 month of age in Prph2KI/KI mice and from 6 months of age in Prph2WT/KI mice. Morphological analysis of the retinas correlated with functional findings, showing a progressive decrease in retinal thickness of mutant mice, with earlier and more severe changes in the homozygous mutant mice. We corroborated the alteration of the outer segment structure, and we found changes in the synaptic connectivity in the outer plexiform layer as well as gliosis and signs of microglial activation. The new Prph2WT/KI and Prph2KI/KI murine models show a pattern of retinal degeneration similar to that described in human patients with central areolar choroidal dystrophy and appear to be good models to study the mechanisms involved in the onset and progression of the disease, as well as to test the efficacy of new therapeutic strategies.


Subject(s)
Retinal Degeneration , Animals , Humans , Infant , Mice , Electroretinography , Microglia , Mutation/genetics , Peripherins/genetics , Retina , Retinal Degeneration/genetics
2.
Int J Mol Sci ; 24(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38003256

ABSTRACT

Ischemia is the main cause of cell death in retinal diseases such as vascular occlusions, diabetic retinopathy, glaucoma, or retinopathy of prematurity. Although excitotoxicity is considered the primary mechanism of cell death during an ischemic event, antagonists of glutamatergic receptors have been unsuccessful in clinical trials with patients suffering ischemia or stroke. Our main purpose was to analyze if the transient receptor potential channel 7 (TRPM7) could contribute to retinal dysfunction in retinal pathologies associated with ischemia. By using an experimental model of acute retinal ischemia, we analyzed the changes in retinal function by electroretinography and the changes in retinal morphology by optical coherence tomography (OCT) and OCT-angiography (OCTA). Immunohistochemistry was performed to assess the pattern of TRPM7 and its expression level in the retina. Our results show that ischemia elicited a decrease in retinal responsiveness to light stimuli along with reactive gliosis and a significant increase in the expression of TRPM7 in Müller cells. TRPM7 could emerge as a new drug target to be explored in retinal pathologies associated with ischemia.


Subject(s)
Retinal Diseases , TRPM Cation Channels , Animals , Humans , Infant, Newborn , Mice , Ischemia/pathology , Protein Serine-Threonine Kinases/metabolism , Reperfusion/adverse effects , Retina/metabolism , Retinal Diseases/metabolism , Retinal Vessels/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism
3.
Invest Ophthalmol Vis Sci ; 64(13): 32, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37862028

ABSTRACT

Purpose: We aimed to generate and phenotype a mouse model of foveal hypoplasia, optic nerve decussation defects, and anterior segment dysgenesis (FHONDA), a rare disease associated with mutations in Slc38a8 that causes severe visual alterations similar to albinism without affecting pigmentation. Methods: The FHONDA mouse model was generated with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology using an RNA guide targeting the Scl38a8 murine locus. The resulting mice were backcrossed to C57BL/6J. Melanin content was measured using spectrophotometry. Retinal cell architecture was analyzed through light and electron microscopy. Retinal projections to the brain were evaluated with anterograde labelling in embryos and adults. Visual function was assessed by electroretinography (ERG) and the optomotor test (OT). Results: From numerous Slc38a8 mouse mutant alleles generated, we selected one that encodes a truncated protein (p.196Pro*, equivalent to p.199Pro* in the human protein) closely resembling a mutant allele described in patients (p.200Gln*). Slc38a8 mutant mice exhibit wild-type eye and coat pigmentation with comparable melanin content. Subcellular abnormalities were observed in retinal pigment epithelium cells of Slc38a8 mutant mice. Anterograde labeling experiments of retinal projections in embryos and adults showed a reduction of ipsilateral fibers. Functional visual analyses revealed a decreased ERG response in scotopic conditions and a reduction of visual acuity in mutant mice measured by OT. Conclusions: Slc38a8 mutant mice recapitulate the phenotype of patients with FHONDA concerning their normal pigmentation and their abnormal visual system, in the latter being a hallmark of all types of albinism. These mice will be helpful in better understanding the pathophysiology of this genetic condition.


Subject(s)
Albinism , Amino Acid Transport Systems, Neutral , Eye Abnormalities , Adult , Humans , Mice , Animals , Melanins , Mice, Inbred C57BL , Pigmentation , Amino Acid Transport Systems, Neutral/genetics
5.
Transl Neurodegener ; 12(1): 17, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37013599

ABSTRACT

BACKGROUND: The main clinical symptoms characteristic of Parkinson's disease (PD) are bradykinesia, tremor, and other motor deficits. However, non-motor symptoms, such as visual disturbances, can be identified at early stages of the disease. One of these symptoms is the impairment of visual motion perception. Hence, we sought to determine if the starburst amacrine cells, which are the main cellular type involved in motion direction selectivity, are degenerated in PD and if the dopaminergic system is related to this degeneration. METHODS: Human eyes from control (n = 10) and PD (n = 9) donors were available for this study. Using immunohistochemistry and confocal microscopy, we quantified starburst amacrine cell density (choline acetyltransferase [ChAT]-positive cells) and the relationship between these cells and dopaminergic amacrine cells (tyrosine hydroxylase-positive cells and vesicular monoamine transporter-2-positive presynapses) in cross-sections and wholemount retinas. RESULTS: First, we found two different ChAT amacrine populations in the human retina that presented different ChAT immunoreactivity intensity and different expression of calcium-binding proteins. Both populations are affected in PD and their density is reduced compared to controls. Also, we report, for the first time, synaptic contacts between dopaminergic amacrine cells and ChAT-positive cells in the human retina. We found that, in PD retinas, there is a reduction of the dopaminergic synaptic contacts into ChAT cells. CONCLUSIONS: Taken together, this work indicates degeneration of starburst amacrine cells in PD related to dopaminergic degeneration and that dopaminergic amacrine cells could modulate the function of starburst amacrine cells. Since motion perception circuitries are affected in PD, their assessment using visual tests could provide new insights into the diagnosis of PD.


Subject(s)
Motion Perception , Parkinson Disease , Humans , Amacrine Cells/metabolism , Parkinson Disease/metabolism , Retina , Dopaminergic Neurons
6.
Int J Mol Sci ; 23(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499084

ABSTRACT

The purinergic receptor P2X7 (P2X7R) is implicated in all neurodegenerative diseases of the central nervous system. It is also involved in the retinal degeneration associated with glaucoma, age-related macular degeneration, and diabetic retinopathy, and its overexpression in the retina is evident in these disorders. Retinitis pigmentosa is a progressive degenerative disease that ultimately leads to blindness. Here, we investigated the expression of P2X7R during disease progression in the rd10 mouse model of RP. As the purinergic receptor P2X4 is widely co-expressed with P2X7R, we also studied its expression in the retina of rd10 mice. The expression of P2X7R and P2X4R was examined by immunohistochemistry, flow cytometry, and western blotting. In addition, we analyzed retinal functionality by electroretinographic recordings of visual responses and optomotor tests and retinal morphology. We found that the expression of P2X7R and P2X4R increased in rd10 mice concomitant with disease progression, but with different cellular localization. Our findings suggest that P2X7R and P2X4R might play an important role in RP progression, which should be further analyzed for the pharmacological treatment of inherited retinal dystrophies.


Subject(s)
Receptors, Purinergic P2X4 , Receptors, Purinergic P2X7 , Retinitis Pigmentosa , Animals , Mice , Disease Models, Animal , Disease Progression , Electroretinography , Mice, Inbred C57BL , Receptors, Purinergic P2X7/genetics , Retinitis Pigmentosa/genetics , Receptors, Purinergic P2X4/genetics
7.
Sci Adv ; 8(47): eabq8109, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36417513

ABSTRACT

Neuronal connectivity and activity-dependent synaptic plasticity are fundamental properties that support brain function and cognitive performance. Phosphatidylinositol 3-kinase (PI3K) intracellular signaling controls multiple mechanisms mediating neuronal growth, synaptic structure, and plasticity. However, it is still unclear how these pleiotropic functions are integrated at molecular and cellular levels. To address this issue, we used neuron-specific virally delivered Cre expression to delete either p110α or p110ß (the two major catalytic isoforms of type I PI3K) from the hippocampus of adult mice. We found that dendritic and postsynaptic structures are almost exclusively supported by p110α activity, whereas p110ß controls neurotransmitter release and metabotropic glutamate receptor-dependent long-term depression at the presynaptic terminal. In addition to these separate functions, p110α and p110ß jointly contribute to N-methyl-d-aspartate receptor-dependent postsynaptic long-term potentiation. This molecular and functional specialization is reflected in different proteomes controlled by each isoform and in distinct behavioral alterations for learning/memory and sociability in mice lacking p110α or p110ß.

8.
Front Neuroanat ; 16: 984052, 2022.
Article in English | MEDLINE | ID: mdl-36225228

ABSTRACT

Multiple gene mutations have been associated with inherited retinal dystrophies (IRDs). Despite the spectrum of phenotypes caused by the distinct mutations, IRDs display common physiopathology features. Cell death is accompanied by inflammation and oxidative stress. The vertebrate retina has several attributes that make this tissue vulnerable to oxidative and nitrosative imbalance. The high energy demands and active metabolism in retinal cells, as well as their continuous exposure to high oxygen levels and light-induced stress, reveal the importance of tightly regulated homeostatic processes to maintain retinal function, which are compromised in pathological conditions. In addition, the subsequent microglial activation and gliosis, which triggers the secretion of pro-inflammatory cytokines, chemokines, trophic factors, and other molecules, further worsen the degenerative process. As the disease evolves, retinal cells change their morphology and function. In disease stages where photoreceptors are lost, the remaining neurons of the retina to preserve their function seek out for new synaptic partners, which leads to a cascade of morphological alterations in retinal cells that results in a complete remodeling of the tissue. In this review, we describe important molecular and morphological changes in retinal cells that occur in response to oxidative stress and the inflammatory processes underlying IRDs.

9.
Antioxidants (Basel) ; 11(6)2022 May 30.
Article in English | MEDLINE | ID: mdl-35739983

ABSTRACT

Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species' accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.

10.
PLoS Biol ; 19(5): e3001252, 2021 05.
Article in English | MEDLINE | ID: mdl-33983919

ABSTRACT

The mitochondrial ATP synthase emerges as key hub of cellular functions controlling the production of ATP, cellular signaling, and fate. It is regulated by the ATPase inhibitory factor 1 (IF1), which is highly abundant in neurons. Herein, we ablated or overexpressed IF1 in mouse neurons to show that IF1 dose defines the fraction of active/inactive enzyme in vivo, thereby controlling mitochondrial function and the production of mitochondrial reactive oxygen species (mtROS). Transcriptomic, proteomic, and metabolomic analyses indicate that IF1 dose regulates mitochondrial metabolism, synaptic function, and cognition. Ablation of IF1 impairs memory, whereas synaptic transmission and learning are enhanced by IF1 overexpression. Mechanistically, quenching the IF1-mediated increase in mtROS production in mice overexpressing IF1 reduces the increased synaptic transmission and obliterates the learning advantage afforded by the higher IF1 content. Overall, IF1 plays a key role in neuronal function by regulating the fraction of ATP synthase responsible for mitohormetic mtROS signaling.


Subject(s)
Mitochondria/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Proteins/metabolism , Adenosine Triphosphate/metabolism , Animals , Brain/metabolism , Cell Line , Hippocampus/metabolism , Mice , Mice, Inbred C57BL , Mitochondrial Proton-Translocating ATPases/physiology , Primary Cell Culture , Proteins/physiology , Reactive Oxygen Species/metabolism , Signal Transduction , ATPase Inhibitory Protein
11.
EMBO J ; 40(2): e105513, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33197065

ABSTRACT

Glycogen synthase kinase-3 (GSK3) is an important signalling protein in the brain and modulates different forms of synaptic plasticity. Neuronal functions of GSK3 are typically attributed to one of its two isoforms, GSK3ß, simply because of its prevalent expression in the brain. Consequently, the importance of isoform-specific functions of GSK3 in synaptic plasticity has not been fully explored. We now directly address this question for NMDA receptor-dependent long-term depression (LTD) in the hippocampus. Here, we specifically target the GSK3 isoforms with shRNA knock-down in mouse hippocampus and with novel isoform-selective drugs to dissect their roles in LTD. Using electrophysiological and live imaging approaches, we find that GSK3α, but not GSK3ß, is required for LTD. The specific engagement of GSK3α occurs via its transient anchoring in dendritic spines during LTD induction. We find that the major GSK3 substrate, the microtubule-binding protein tau, is required for this spine anchoring of GSK3α and mediates GSK3α-induced LTD. These results link GSK3α and tau in a common mechanism for synaptic depression and rule out a major role for GSK3ß in this process.


Subject(s)
Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3/metabolism , Hippocampus/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , tau Proteins/metabolism , Animals , Mice , Neuronal Plasticity/physiology , Neurons/metabolism , Protein Isoforms/metabolism
12.
J Cell Sci ; 129(14): 2793-803, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27257087

ABSTRACT

Hippocampal synaptic plasticity involves both membrane trafficking events and intracellular signaling, but how these are coordinated is far from clear. The endosomal transport of glutamate receptors in and out of the postsynaptic membrane responds to multiple signaling cascades triggered by synaptic activity. In this work, we have identified adaptor protein containing a plekstrin homology domain, phosphotyrosine-binding domain and leucine zipper motif 1 (APPL1) as a crucial element linking trafficking and signaling during synaptic plasticity. We show that APPL1 knockdown specifically impairs PI3K-dependent forms of synaptic plasticity, such as long-term potentiation (LTP) and metabotropic-glutamate-receptor-dependent long-term depression (mGluR-LTD). Indeed, we demonstrate that APPL1 is required for the activation of the phosphatidylinositol triphosphate (PIP3) pathway in response to LTP induction. This requirement can be bypassed by membrane localization of PI3K and is related to phosphoinositide binding. Interestingly, inhibitors of PDK1 (also known as PDPK1) and Akt have no effect on LTP expression. Therefore, we conclude that APPL1 gates PI3K activation at the plasma membrane upon LTP induction, which is then relayed by downstream PIP3 effectors that are different from PDK1 and Akt.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Long-Term Potentiation , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Animals , Dendritic Spines/metabolism , Enzyme Activation , Hippocampus/cytology , Phosphatidylinositol 3-Kinases/metabolism , Protein Domains , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-akt/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , RNA, Small Interfering/metabolism , Rats, Wistar , Signal Transduction , Synapses/metabolism , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...