Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 24(19)2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31574952

ABSTRACT

Bioactive Phenols-loaded chitosan nanoparticles (PL-CNps) were developed by ionic gelation from Persian lemon (Citrus latifolia) waste (PLW) and chitosan nanoparticles. Response Surface Methodology (RSM) was used to determine the optimal Ultrasound-Assisted Extraction (UAE) conditions for the total phenolic compounds (TPC) recovery from PLW (58.13 mg GAE/g dw), evaluating the ethanol concentration, extraction time, amplitude, and solid/liquid ratio. Eight compounds expressed as mg/g dry weight (dw) were identified by ultra-performance liquid chromatography coupled photo diode array (UPLC-PDA) analysis: eriocitrin (20.71 ± 0.09), diosmin (18.59 ± 0.13), hesperidin (7.30 ± 0.04), sinapic acid (3.67 ± 0.04), catechin (2.92 ± 0.05), coumaric acid (2.86 ± 0.01), neohesperidin (1.63 ± 0.00), and naringenin (0.44 ± 0.00). The PL-CNps presented size of 232.7 nm, polydispersity index of 0.182, Z potential of -3.8 mV, and encapsulation efficiency of 81.16%. The results indicated that a synergic effect between phenolic compounds from PLW and chitosan nanoparticles was observed in antioxidant and antibacterial activity, according to Limpel's equation. Such results indicate that PLW in such bioprocesses shows excellent potential as substrates for the production of value-added compounds with a special application for the food industry.


Subject(s)
Chitosan , Citrus/chemistry , Nanoparticles , Phenols/isolation & purification , Phenols/pharmacology , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Chemical Fractionation , Chitosan/chemistry , Chromatography, High Pressure Liquid , Nanoparticles/chemistry , Phenols/chemistry , Plant Extracts/chemistry , Spectrum Analysis , Ultrasonic Waves
2.
Parasitology ; 139(4): 434-40, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22309702

ABSTRACT

Giardiosis is a neglected parasitic disease that produces diarrhoea and different degrees of malabsorption in humans and animals. Its treatment is based on derivatives of 5-nitroimidazoles, benzimidazoles, nitrofuranes, acridine and nitrotiazoles. These drugs produce undesirable secondary effects, ranging from a metallic taste in the mouth to genetic damage and the selection of resistant strains; therefore, it is necessary to develop new therapeutic alternatives. We demonstrated that a 2-h treatment with 2·87 µg ml(-1) of fraction 6 of Lippia graveolens (F-6) was sufficient to kill half of an experimental Giardia intestinalis (Syn. G. duodenalis, G. lamblia) population, based on the reduction of MTT-tetrazolium salt levels. F-6 breaks the nuclear envelope and injures the ventral suckling disc. The major compounds of F-6 were characterized as naringenin, thymol, pinocembrin and traces of compounds not yet identified. The results suggest that Lippia is a potential source to obtain compounds with anti-Giardia activity. This knowledge is an important starting point to develop new anti-giardial drugs. Future studies will be required to establish the efficacy of F-6 in vivo using an animal model.


Subject(s)
Giardia lamblia/drug effects , Lippia/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Animals , Giardia lamblia/ultrastructure , Humans , Lymphocytes/drug effects , Microscopy, Electron, Transmission , Oxidation-Reduction , Parasitic Sensitivity Tests , Plant Extracts/toxicity , Tetrazolium Salts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL