Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(14)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38597308

ABSTRACT

Electron pairs have an illustrious history in chemistry, from powerful concepts to understanding structural stability and reactive changes to the promise of serving as building blocks of quantitative descriptions of the electronic structure of complex molecules and materials. However, traditionally, two-electron wavefunctions (geminals) have not enjoyed the popularity and widespread use of the more standard single-particle methods. This has changed recently, with a renewed interest in the development of geminal wavefunctions as an alternative to describing strongly correlated phenomena. Hence, there is a need to find geminal methods that are accurate, computationally tractable, and do not demand significant input from the user (particularly via cumbersome and often ill-behaved orbital optimization steps). Here, we propose new families of geminal wavefunctions inspired by the pair coupled cluster doubles ansatz. We present a new hierarchy of two-electron wavefunctions that extends the one-reference orbital idea to other geminals. Moreover, we show how to incorporate single-like excitations in this framework without leaving the quasiparticle picture. We explore the role of imposing seniority restrictions on these wavefunctions and benchmark these new methods on model strongly correlated systems.

2.
J Phys Chem A ; 128(17): 3458-3467, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38651558

ABSTRACT

We propose a new perturbation theory framework that can be used to help with the projective solution of the Schrödinger equation for arbitrary wave functions. This Flexible Ansatz for N-body Perturbation Theory (FANPT) is based on our previously proposed Flexible Ansatz for the N-body Configuration Interaction (FANCI). We derive recursive FANPT expressions, including arbitrary orders in the perturbation hierarchy. We show that the FANPT equations are well-behaved across a wide range of conditions, including static correlation-dominated configurations and highly nonlinear wave functions.

3.
J Comput Chem ; 44(5): 697-709, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36440947

ABSTRACT

Fanpy is a free and open-source Python library for developing and testing multideterminant wavefunctions and related ab initio methods in electronic structure theory. The main use of Fanpy is to quickly prototype new methods by making it easier to convert the mathematical formulation of a new wavefunction ansätze to a working implementation. Fanpy is designed based on our recently introduced Flexible Ansatz for N-electron Configuration Interaction (FANCI) framework, where multideterminant wavefunctions are represented by their overlaps with Slater determinants of orthonormal spin-orbitals. In the simplest case, a new wavefunction ansatz can be implemented by simply writing a function for evaluating its overlap with an arbitrary Slater determinant. Fanpy is modular in both implementation and theory: the wavefunction model, the system's Hamiltonian, and the choice of objective function are all independent modules. This modular structure makes it easy for users to mix and match different methods and for developers to quickly explore new ideas. Fanpy is written purely in Python with standard dependencies, making it accessible for various operating systems. In addition, it adheres to principles of modern software development, including comprehensive documentation, extensive testing, quality assurance, and continuous integration and delivery protocols. This article is considered to be the official release notes for the Fanpy library.


Subject(s)
Quantum Theory , Software , Electrons
4.
Dev Comp Immunol ; 67: 310-321, 2017 02.
Article in English | MEDLINE | ID: mdl-27616720

ABSTRACT

Beta_defensin have been solely found in vertebrates until ß-defensin-like peptides were described as transcript isoforms in two species of Panulirus genus. They were considered as putative antimicrobials since their biological activity have not been demonstrated. Here we purified and characterized a defensin-like peptide from the hemocytes of spiny lobster P. argus, hereafter named panusin. Structurally, panusin presents a cysteine-stabilized α/ß motif, and is prone to form homodimers. Biological activity of panusin showed broad-spectrum antimicrobial activity, characterized for being strikingly salt-resistant. Panusin did not showed hemolytic activity but was demonstrated its binding capacity to different lipid membrane models, indicating amphipathicity of ß-sheet core as driving force for its antimicrobial activity. Panusin is considered a new kind of arthropod defensin which share structural and biological features with beta-defensin from vertebrates. The presence of beta-defensin like peptides in crustacean might suggest the emergence of the evolutionary relationship of ß-defensins from vertebrates.


Subject(s)
Anti-Infective Agents/metabolism , Arthropod Proteins/metabolism , Hemocytes/immunology , Palinuridae/immunology , beta-Defensins/metabolism , Animals , Arthropod Proteins/genetics , Biological Evolution , Dimerization , Invertebrates , Phylogeny , Protein Conformation , Structural Homology, Protein , beta-Defensins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...