Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Med Eng Phys ; 129: 104185, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38906579

ABSTRACT

The aim of this work is to investigate in-silico the biomechanical effects of a proximal fibular osteotomy (PFO) on a knee joint with different varus/valgus deformities on the progression of knee osteoarthritis (KOA). A finite element analysis (FEA) of a human lower extremity consisting of the femoral, tibial and fibular bones and the cartilage connecting them was designed. The FEA was performed in a static standing primitive position to determine the contact pressure (CP) distribution and the location of the center of pressure (CoP). The analysis examined the relationship between these factors and the degree of deformation of the hip-knee angle in the baseline condition. The results suggested that PFO could be a simple and effective surgical treatment for patients with associated genu varum. This work also reported that a possible CP homogenization and a CoP correction can be achieved for medial varus deformities after PFO. However, it reduced its effectiveness for tibial origin valgus misalignment and worsened in cases of femoral valgus misalignment.


Subject(s)
Computer Simulation , Finite Element Analysis , Knee Joint , Osteotomy , Pressure , Humans , Biomechanical Phenomena , Knee Joint/surgery , Knee Joint/physiopathology , Fibula/surgery
2.
J Orthop Surg Res ; 19(1): 333, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835085

ABSTRACT

BACKGROUND: Knee osteoarthritis (KOA) represents a widespread degenerative condition among adults that significantly affects quality of life. This study aims to elucidate the biomechanical implications of proximal fibular osteotomy (PFO), a proposed cost-effective and straightforward intervention for KOA, comparing its effects against traditional high tibial osteotomy (HTO) through in-silico analysis. METHODS: Using medical imaging and finite element analysis (FEA), this research quantitatively evaluates the biomechanical outcomes of a simulated PFO procedure in patients with severe medial compartment genu-varum, who have undergone surgical correction with HTO. The study focused on evaluating changes in knee joint contact pressures, stress distribution, and anatomical positioning of the center of pressure (CoP). Three models are generated for each of the five patients investigated in this study, a preoperative original condition model, an in-silico PFO based on the same original condition data, and a reversed-engineered HTO in-silico model. RESULTS: The novel contribution of this investigation is the quantitative analysis of the impact of PFO on the biomechanics of the knee joint. The results provide mechanical evidence that PFO can effectively redistribute and homogenize joint stresses, while also repositioning the CoP towards the center of the knee, similar to what is observed post HTO. The findings propose PFO as a potentially viable and simpler alternative to conventional surgical methods for managing severe KOA, specifically in patients with medial compartment genu-varum. CONCLUSION: This research also marks the first application of FEA that may support one of the underlying biomechanical theories of PFO, providing a foundation for future clinical and in-silico studies.


Subject(s)
Computer Simulation , Fibula , Knee Joint , Osteoarthritis, Knee , Osteotomy , Pressure , Humans , Osteotomy/methods , Osteoarthritis, Knee/surgery , Osteoarthritis, Knee/physiopathology , Fibula/surgery , Knee Joint/surgery , Knee Joint/physiopathology , Knee Joint/diagnostic imaging , Tibia/surgery , Tibia/diagnostic imaging , Finite Element Analysis , Biomechanical Phenomena , Male , Female , Middle Aged , Adult
3.
Enferm Clin (Engl Ed) ; 34(2): 82-89, 2024.
Article in English | MEDLINE | ID: mdl-38484934

ABSTRACT

OBJECTIVE: To evaluate the degree of satisfaction of women treated with dermopigmentation and reconstruction of the Areola-Nipple Complex (ANC) after breast reconstruction, as well as their demographic profile and clinical-evolutionary characteristics. METHODS: Descriptive observational study including 128 women treated with dermopigmentation after oncologic breast reconstruction during 2018. In 2021 they were administered an adapted satisfaction questionnaire, which contains 27 items and categorizes satisfaction from 1-5, in addition other clinical-evolutionary and demographic variables were collected. RESULTS: Mean age was 51 (±9) years, 89.1% had previously undergone PDA reconstruction. Mean satisfaction with dermopigmentation was 4.4 (±0.88) and 3.79 (±1.06) for PDA reconstruction. Complications were rare, but 54.5% (n = 54) of the patients reported that the CAP reconstruction did not offer the expected projection, 91.6% (n = 98) that the color had faded and 51.4% (n = 55) would choose permanent tattooing. It was perceived that, the higher the satisfaction of the CAP, the higher the satisfaction of dermopigmentation, while the older the age and previous chemotherapy treatment the lower the color durability (p value ≤ 0.05). CONCLUSIONS: Patients who underwent reconstructive breast surgery show a high degree of satisfaction with dermopigmentation and surgical reconstruction of the PDA, but reiterate the low projecticity of the dermopigmentation and the surgical reconstruction of the PDA, but reiterate the low degree of satisfaction with the dermopigmentation.


Subject(s)
Breast Neoplasms , Mammaplasty , Nipples , Patient Satisfaction , Humans , Female , Middle Aged , Mammaplasty/methods , Nipples/surgery , Breast Neoplasms/surgery , Adult , Tattooing , Aged , Skin Pigmentation
4.
Materials (Basel) ; 14(16)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34443147

ABSTRACT

Wear-resistant coatings development is progressively increasing steeply due to their advantages when applied to mechanical components subjected to abrasive and destructive environments. Titanium nitride (TiN) coating is typically used to enlarge tools and components' service life and improve their surface quality. On the other hand, AlTiSiN coating intends to be applied to more aggressive environments such as spatial satellites components exposed to solar radiation, extremely high temperatures, and random particles impact. In this work, specimens of Inconel 718 (IN718) were fabricated via laser powder bed fusion (LPBF), and physical vapour deposition (PVD)-deposited with TiN and AlTiSiN as coatings to mechanically and chemically characterise their surface. In this respect, microhardness testing and chemical analysis via glow discharge optical emission spectroscopy (GDOES) were performed. Later, roughness and wear behaviour analyses were carried out to evaluate the mechanical performance of both coatings and their surface and morphological features. The experimental observations allowed the analysis of both studied coatings by comparing them with the substrate processed via LPBF.

5.
Materials (Basel) ; 13(22)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187227

ABSTRACT

The present paper evaluates the misalignment and geometry distortion of the standard National Institute of Standards and Technology (NIST) test artifact in Inconel 718 alloy, when several layers with and without supports are employed to manufacture it by the Selective Laser Melting (SLM) process. To this end, a coordinate-measuring machine (CMM) is used to measure the geometrical distortion in each manufacturing configuration, following the same measurement protocol. The results show that the laser path strategy favors a thermal gradient which, consequently, induces geometrical distortions in the part. To prove this hypothesis, a numerical simulation is performed to determine the thermal gradient and the pattern of the residual stresses. It was found that the geometrical distortion certainly depends on the position of the feature position and laser strategy, where thermal cycles and residual thermal stresses had an impact in the end-part geometry, especially if a high strength-to-weight ratio commonly used in aeronautics is present.

6.
Materials (Basel) ; 13(14)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32709139

ABSTRACT

In the forging industry, surface quality and surface treatments of dies are crucial parameters to extend their life. These components are usually machined by milling or by Electrical Discharge Machining (EDM), and the final surface roughness depends on the machining techniques and operational conditions used in its fabrication. After milling, a nitriding treatment is widely applied to extend its service life. Nevertheless, no scientific report that informs about nitriding after EDM has been found. Accordingly, this work focuses on the wear and friction behavior of pins made of brass and medium carbon steel sliding over AISI H13 discs, made by wire EDM in the conditions of finishing and roughing. The discs are plasma nitride, and their effect on the wear during pin-on-disc tests is evaluated. In this sense, the analysis of the surface damage for the different pins will help us to understand the service life and wear evolution of the forging dies. The results show that plasma nitride reduces the friction and prevents the degradation of the pin, independently of the material of the pin, when sliding over finishing and roughing EDM conditions.

7.
Materials (Basel) ; 13(3)2020 Jan 24.
Article in English | MEDLINE | ID: mdl-31991699

ABSTRACT

The objective of this work is to analyze the influence of the vibration-assisted turning process on the machinability of S235 carbon steel. During the experiments using this vibrational machining process, the vibrational amplitude and frequency of the cutting tool were adjusted to drive the tool tip in an elliptical or linear motion in the feed direction. Furthermore, a finite element analysis was deployed to investigate the mechanical response for different vibration-assisted cutting conditions. The results show how the specific cutting energy and the material's machinability behave when using different operational cutting parameters, such as vibration frequency and tool tip motion in the x-axis, y-axis, and elliptical (x-y plane) motion. Then, the specific cutting energy and material's machinability are compared with a conventional turning process, which helps to validate the finite element method (FEM) for the vibration-assisted process. As a result of the operating parameters used, the vibration-assisted machining process leads to a machinability improvement of up to 18% in S235 carbon steel. In particular, higher vibration frequencies were shown to increase the material's machinability due to the specific cutting energy decrease. Therefore, the finite element method can be used to predict the vibration-assisted cutting and the specific cutting energy, based on predefined cutting parameters.

8.
Materials (Basel) ; 13(2)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31963120

ABSTRACT

Developing bio-inspired functional surfaces on engineering metals is of extreme importance, involving different industrial sectors, like automotive or aeronautics. In particular, micro-embossing is one of the efficient and large-scale processes for manufacturing bio-inspired textures on metallic surfaces. However, this process faces some problems, such as filling defects and die breakage due to size effect, which restrict this technology for some components. Electrically assisted micro-forming has demonstrated the ability of reducing size effects, improving formability and decreasing flow stress, making it a promising hybrid process to control the filling quality of micro-scale features. This research focuses on the use of different current densities to perform embossed micro-channels of 7 µm and sharklet patterns of 10 µm in textured bulk metallic glass dies. These dies are prepared by thermoplastic forming based on the compression of photolithographic silicon molds. The results show that large areas of bio-inspired textures could be fabricated on magnesium alloy when current densities higher than 6 A/mm2 (threshold) are used. The optimal surface quality scenario is obtained for a current density of 13 A/mm2. Additionally, filling depth and depth-width ratio nonlinearly increases when higher current densities are used, where the temperature is a key parameter to control, keeping it below the temperature of the glass transition to avoid melting or an early breakage of the die.

9.
Materials (Basel) ; 12(6)2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30901840

ABSTRACT

Grinding energy efficiency depends on the appropriate selection of cutting conditions, grinding wheel, and workpiece material. Additionally, the estimation of specific energy consumption is a good indicator to control the consumed energy during the grinding process. Consequently, this study develops a model of material-removal rate to estimate specific energy consumption based on the measurement of active power consumed in a plane surface grinding of C45K with different thermal treatments and AISI 304. This model identifies and evaluates the dissipated power by sliding, ploughing, and chip formation in an industrial-scale grinding process. Furthermore, the instantaneous positions of abrasive grains during cutting are described to study the material-removal rate. The estimation of specific chip-formation energy is similar to that described by other authors on a laboratory scale, which allows to validate the model and experiments. Finally, the results show that the energy consumed by sliding is the main mechanism of energy dissipation in an industrial-scale grinding process, where it is denoted that sliding energy by volume unity decreases as the depth of cut and the speed of the workpiece increase.

10.
Materials (Basel) ; 11(6)2018 May 25.
Article in English | MEDLINE | ID: mdl-29799454

ABSTRACT

In this article, the influence of electropulsing on the machinability of steel S235 and aluminium 6060 has been studied during conventional and electropulsing-assisted turning processes. The machinability indices such as chip compression ratio ξ , shear plane angle ϕ and specific cutting energy (SCE) are investigated by using different cutting parameters such as cutting speed, cutting feed and depth of cut during electrically-assisted turning process. The results and analysis of this work indicated that the electrically-assisted turning process improves the machinability of steel S235, whereas the machinability of aluminium 6060 gets worse. Finally, due to electropluses (EPs), the chip compression ratio ξ increases with the increase in cutting speed during turning of aluminium 6060 and the SCE decreases during turning of steel S235.

11.
Materials (Basel) ; 12(1)2018 Dec 31.
Article in English | MEDLINE | ID: mdl-30602675

ABSTRACT

The size effects in metal forming have been found to be crucial in micro-scale plastic deformation or micro-forming processes, which lead to attenuation of the material's formability due to the increasing heterogeneity of the plastic flow. The use of an electric field during micro-scale plastic deformation has shown to relieve size effects, enhance the material's formability, modify the microstructure, etc. Consequently, these electric-assisted (EA) micro-forming processes seem to bring many potential benefits that need to be investigated. Accordingly, here we investigated the influence of an electric field on the size effects to describe the fracture behavior in uniaxial micro-tension tests of an AZ31 alloy with various grain sizes. In order to decouple the thermal-mechanical and microstructure changes, room temperature (RT), oven-heated (OH), air-cooled (AC), and EA uniaxial micro-tension tests were conducted. The size effects contribution on the fracture stress and strain showed a similar trend in all the testing configurations. However, the smallest fracture stresses and the largest fracture strains were denoted in the EA configuration. EBSD examination shows that current-induced dynamic recrystallization (DRX) and texture evolution could be negligible under the studied conditions. The kernel average misorientation (KAM) maps give the larger plastic deformation in the EA specimens due to the reduction of plastic micro-heterogeneity. Finally, the fracture morphology indicates that the current-induced ductility enhancement may be attributed to the arrest of micro-crack propagation and the inhibition of void initiation, growth, and coalescence caused by lattice melting and expansion.

12.
Med Biol Eng Comput ; 56(5): 879-888, 2018 May.
Article in English | MEDLINE | ID: mdl-29063366

ABSTRACT

The aim of this study is to analyze a common method to measure the acceleration of a daily activity pattern by using a smartphone. In this sense, a numerical approach is proposed to transform the relative acceleration signal, recorded by a triaxial accelerometer, into an acceleration referred to an inertial reference. The integration of this acceleration allows to determine the velocity and position with respect to an inertial reference. Two different kinematic parameters are suggested to characterize the profile of the velocity during the sit-to-stand and stand-to-sit transitions for Parkinson and control subjects. The results show that a dimensionless kinematic parameter, which is linked to the time of sit-to-stand and stand-to-sit transitions, has the potential to differentiate between Parkinson and control subjects.


Subject(s)
Posture/physiology , Smartphone , Acceleration , Aged , Biomechanical Phenomena , Case-Control Studies , Female , Humans , Male , Middle Aged , Signal Processing, Computer-Assisted , Time Factors
13.
PLoS One ; 12(8): e0183843, 2017.
Article in English | MEDLINE | ID: mdl-28841694

ABSTRACT

BACKGROUND: The differential diagnosis between patients with essential tremor (ET) and those with Parkinson's disease (PD) whose main manifestation is tremor may be difficult unless using complex neuroimaging techniques such as 123I-FP-CIT SPECT. We considered that using smartphone's accelerometer to stablish a diagnostic test based on time-frequency differences between PD an ET could support the clinical diagnosis. METHODS: The study was carried out in 17 patients with PD, 16 patients with ET, 12 healthy volunteers and 7 patients with tremor of undecided diagnosis (TUD), who were re-evaluated one year after the first visit to reach the definite diagnosis. The smartphone was placed over the hand dorsum to record epochs of 30 s at rest and 30 s during arm stretching. We generated frequency power spectra and calculated receiver operating characteristics curves (ROC) curves of total spectral power, to establish a threshold to separate subjects with and without tremor. In patients with PD and ET, we found that the ROC curve of relative energy was the feature discriminating better between the two groups. This threshold was then used to classify the TUD patients. RESULTS: We could correctly classify 49 out of 52 subjects in the category with/without tremor (97.96% sensitivity and 83.3% specificity) and 27 out of 32 patients in the category PD/ET (84.38% discrimination accuracy). Among TUD patients, 2 of 2 PD and 2 of 4 ET were correctly classified, and one patient having PD plus ET was classified as PD. CONCLUSIONS: Based on the analysis of smartphone accelerometer recordings, we found several kinematic features in the analysis of tremor that distinguished first between healthy subjects and patients and, ultimately, between PD and ET patients. The proposed method can give immediate results for the clinician to gain valuable information for the diagnosis of tremor. This can be useful in environments where more sophisticated diagnostic techniques are unavailable.


Subject(s)
Accelerometry/instrumentation , Essential Tremor/diagnosis , Parkinson Disease/diagnosis , Smartphone , Case-Control Studies , Diagnosis, Differential , Humans , Prospective Studies
14.
Clin Biomech (Bristol, Avon) ; 29(4): 444-50, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24530154

ABSTRACT

BACKGROUND: Hip arthritis is a pathology linked to hip-cartilage degeneration. Although the etiology of this disease is not well defined, it is known that age is a determinant risk factor. However, hip arthritis in young patients could be largely promoted by biomechanical factors. The objective of this paper is to analyze the impact of some normal anatomical variations on the cartilage stress distributions numerically predicted at the hip joint during walking. METHODS: A three-dimensional finite element model of the femur and the pelvis with the most relevant axial components of muscle forces was used to simulate normal walking activity. The hip anatomical condition was defined by: neck shaft angle, femoral anteversion angle, and acetabular anteversion angle with a range of 110-130°, 0-20°, and 0-20°, respectively. The direct boundary method was used to simulate the hip contact. FINDINGS: The hydrostatic stress found at the cartilage and labrum showed that a ±10° variation with respect to the reference brings significant differences between the anatomic models. Acetabular anteversion angle of 0° and femoral anteversion angle of 0° were the most affected anatomical conditions with values of hydrostatic stress in the cartilage near 5MPa under compression. INTERPRETATION: Cartilage stresses and contact areas were equivalent to the results found in literature and the most critical anatomical regions in terms of tissue loads were in a good accordance with clinical evidence. Altogether, results showed that decreasing femoral or acetabular anteversion angles isolatedly causes a dramatic increase in cartilage loads.


Subject(s)
Acetabulum/anatomy & histology , Cartilage, Articular/physiology , Femur/anatomy & histology , Finite Element Analysis , Hip Joint/anatomy & histology , Hip Joint/physiology , Models, Anatomic , Aged, 80 and over , Biomechanical Phenomena , Female , Humans , Stress, Mechanical , Weight-Bearing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...