Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 25(3): 1650-1684, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38424230

ABSTRACT

Lung diseases develop when telomeres shorten beyond a critical point. We constructed a mouse model in which the catalytic subunit of telomerase (mTert), or its catalytically inactive form (mTertCI), is expressed from the p21Cdkn1a locus. Expression of either TERT or TERTCI reduces global p21 levels in the lungs of aged mice, highlighting TERT non-canonical function. However, only TERT reduces accumulation of very short telomeres, oxidative damage, endothelial cell (ECs) senescence and senile emphysema in aged mice. Single-cell analysis of the lung reveals that p21 (and hence TERT) is expressed mainly in the capillary ECs. We report that a fraction of capillary ECs marked by CD34 and endowed with proliferative capacity declines drastically with age, and this is counteracted by TERT but not TERTCI. Consistently, only TERT counteracts decline of capillary density. Natural aging effects are confirmed using the experimental model of emphysema induced by VEGFR2 inhibition and chronic hypoxia. We conclude that catalytically active TERT prevents exhaustion of the putative CD34 + EC progenitors with age, thus protecting against capillary vessel loss and pulmonary emphysema.


Subject(s)
Emphysema , Microvascular Rarefaction , Pulmonary Emphysema , Telomerase , Mice , Animals , Telomere Shortening , Telomerase/genetics
2.
J Cell Biol ; 213(5): 571-83, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27241915

ABSTRACT

The molecular mechanisms that drive mammalian cardiomyocytes out of the cell cycle soon after birth remain largely unknown. Here, we identify telomere dysfunction as a critical physiological signal for cardiomyocyte cell-cycle arrest. We show that telomerase activity and cardiomyocyte telomere length decrease sharply in wild-type mouse hearts after birth, resulting in cardiomyocytes with dysfunctional telomeres and anaphase bridges and positive for the cell-cycle arrest protein p21. We further show that premature telomere dysfunction pushes cardiomyocytes out of the cell cycle. Cardiomyocytes from telomerase-deficient mice with dysfunctional telomeres (G3 Terc(-/-)) show precocious development of anaphase-bridge formation, p21 up-regulation, and binucleation. In line with these findings, the cardiomyocyte proliferative response after cardiac injury was lost in G3 Terc(-/-) newborns but rescued in G3 Terc(-/-)/p21(-/-) mice. These results reveal telomere dysfunction as a crucial signal for cardiomyocyte cell-cycle arrest after birth and suggest interventions to augment the regeneration capacity of mammalian hearts.


Subject(s)
Cell Cycle Checkpoints , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Telomere/metabolism , Anaphase , Animals , Animals, Newborn , Cell Proliferation , DNA Damage , DNA Repair , Mice, Inbred C57BL , Models, Biological , Telomerase/metabolism , Telomere Homeostasis
3.
Cell Rep ; 12(10): 1691-703, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26321646

ABSTRACT

After myocardial infarction in humans, lost cardiomyocytes are replaced by an irreversible fibrotic scar. In contrast, zebrafish hearts efficiently regenerate after injury. Complete regeneration of the zebrafish heart is driven by the strong proliferation response of its cardiomyocytes to injury. Here we show that, after cardiac injury in zebrafish, telomerase becomes hyperactivated, and telomeres elongate transiently, preceding a peak of cardiomyocyte proliferation and full organ recovery. Using a telomerase-mutant zebrafish model, we found that telomerase loss drastically decreases cardiomyocyte proliferation and fibrotic tissue regression after cryoinjury and that cardiac function does not recover. The impaired cardiomyocyte proliferation response is accompanied by the absence of cardiomyocytes with long telomeres and an increased proportion of cardiomyocytes showing DNA damage and senescence characteristics. These findings demonstrate the importance of telomerase function in heart regeneration and highlight the potential of telomerase therapy as a means of stimulating cell proliferation upon myocardial infarction.


Subject(s)
Heart/physiology , Regeneration , Telomerase/physiology , Zebrafish Proteins/physiology , Animals , Cell Proliferation , Gene Expression , Gene Knockout Techniques , Myocardium/enzymology , Myocytes, Cardiac/physiology , Tissue Culture Techniques , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...