Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Sci Total Environ ; 928: 172500, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38631630

ABSTRACT

The physical and chemical properties of silver nanoparticles (AgNPs) have led to their increasing use in various fields such as medicine, food, and industry. Evidence has proven that AgNPs cause adverse effects in aquatic ecosystems, especially when the release of Ag is prolonged in time. Several studies have shown short-term adverse effects of AgNPs on freshwater phytoplankton, but few studies have analysed the impact of long-term exposures on these populations. Our studies were carried out to assess the effects of AgNPs on growth rate, photosynthesis activity, and reactive oxygen species (ROS) generation on the freshwater green algae Scenedesmus armatus and the cyanobacteria Microcystis aeruginosa, and additionally on microcystin (MC-LR) generation from these cyanobacteria. The tests were conducted both in single-species cultures and in phytoplanktonic communities exposed to 1 ngL-1 AgNPs for 28 days. The results showed that cell growth rate of both single-species cultures decreased significantly at the beginning and progressively reached control-like values at 28 days post-exposure. This effect was similar for the community-cultured cyanobacteria, but not for the green algae, which maintained a sustained decrease in growth rate. While gross photosynthesis (Pg) increased in both strains exposed in single cultures, dark respiration (R) and net photosynthesis (Pn) decreased in S. armatus and M. aeruginosa, respectively. These effects were mitigated when both strains were exposed under community culture conditions. Similarly, the ROS generation shown by both strains exposed in single-species cultures was mitigated when exposure occurred in community cultures. MC-LR production and release were significantly decreased in both single-species and community exposures. These results can supply helpful information to further investigate the potential risks of AgNPs and ultimately help policymakers make better-informed decisions about their utilization for environmental restoration.


Subject(s)
Fresh Water , Metal Nanoparticles , Microcystis , Phytoplankton , Scenedesmus , Silver , Water Pollutants, Chemical , Metal Nanoparticles/toxicity , Silver/toxicity , Phytoplankton/drug effects , Microcystis/drug effects , Scenedesmus/drug effects , Water Pollutants, Chemical/toxicity , Microcystins/toxicity , Photosynthesis/drug effects , Reactive Oxygen Species/metabolism
2.
Chemosphere ; 339: 139710, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37532199

ABSTRACT

Zero-valent nano-iron particles (nZVI) are increasingly present in freshwater aquatic environments due to their numerous applications in environmental remediation. However, despite the broad benefits associated with the use and development of nZVI nanoparticles, the potential risks of introducing them into the aquatic environment need to be considered. Special attention should be focused on primary producer organisms, the basal trophic level, whose impact affects the rest of the food web. Although there are numerous acute studies on the acute effects of these nanoparticles on photosynthetic primary producers, few studies focus on long-term exposures. The present study aimed at assessing the effects of nZVI on growth rate, photosynthesis activity, and reactive oxygen activity (ROS) on the freshwater green algae Scenedesmus armatus and the cyanobacteria Microcystis aeruginosa. Moreover, microcystin production was also evaluated. These parameters were assessed on both organisms singly exposed to 72 h-effective nZVI concentration for 10% maximal response for 28 days. The results showed that the cell growth rate of S. armatus was initially significantly altered and progressively reached control-like values at 28 days post-exposure, while M. aeruginosa did not show any significant difference concerning control values at any time. In both strains dark respiration (R) increased, unlike net photosynthesis (Pn), while gross photosynthesis (Pg) only slightly increased at 7 days of exposure and then became equal to control values at 28 days of exposure. The nZVI nanoparticles generated ROS progressively during the 28 days of exposure in both strains, although their formation was significantly higher on green algae than on cyanobacteria. These data can provide additional information to further investigate the potential risks of nZVI and ultimately help decision-makers make better informed decisions regarding the use of nZVI for environmental remediation.


Subject(s)
Cyanobacteria , Microcystis , Nanoparticles , Scenedesmus , Phytoplankton , Iron/toxicity , Reactive Oxygen Species/pharmacology , Nanoparticles/toxicity , Fresh Water
3.
Int J Phytoremediation ; 18(12): 1171-7, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27222159

ABSTRACT

Changes induced on freshwater microalga Dictyosphaerium chlorelloides (Dc(wt)) acclimated in the laboratory until their survival in culture media enriched with cadmium 100 µM have been studied. Cadmium removal by living cells of this Cd-resistant (Dc(CdR100)) strain was tested in cultures exposed to 100 µM Cd during 30 days. Cell dimensions were measured under light microscopy, and cell growth was studied. Photosynthetic yield (ΦPSII) was analyzed and the photosynthetic oxygen development and respiration response was obtained. Results show that Dc(CdR100) strain exhibited significant cell morphology changes in comparison to Dc(wt) cells, which affected both surface area and cell biovolume. Malthusian fitness analysis showed that Dc(CdR100) strain living in Cd-enriched culture had developed a lower capacity of nearly 50% growth, and its photosynthetic oxygen development and respiration response were significantly reduced in both light and dark photosynthetic phases. Dc(CdR100) strain showed a very high capacity to remove cadmium from the aquatic environment (over 90%), although most of the removed heavy metal (≈70%) is adhered to the cell wall. These specific characteristics of Dc(CdR100) cells suggest the possibility of using this strain in conjunction with Dc(wt) strain as bioelements into a dual-head biosensor, and in bioremediation processes on freshwater polluted with Cd.


Subject(s)
Cadmium/toxicity , Chlorophyta/drug effects , Microalgae/drug effects , Water Pollutants, Chemical/toxicity , Chlorophyta/anatomy & histology , Chlorophyta/physiology , Microalgae/physiology , Waste Disposal, Fluid
4.
Ecotoxicology ; 25(1): 15-21, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26458928

ABSTRACT

The successful selection of a particular type of bioelement and its association to the appropriate transducer determines the specificity of a biosensor. Therefore, from a strain of chloroficea Dictyosphaerium chlorelloides, modified in laboratory to tolerate high Cr(VI) concentrations, the possible interferences of other heavy metals on photosynthetic activity were studied. After exposing wild type and Cr(VI)-resistant cells to increasing Ag(+1), Co(+2), Hg(+2), Cr(+3), Cu(+2), Zn(+2), Fe(+3) and Cd(+2) concentrations, both photosynthetic quantum yields was compared. Photosynthetic electron transport rates were measured with a TOXY-PAM chlorophyll fluorometer, non-linear regression analysis of each of the toxicity tests was done, and means of both groups were compared using unpaired t test. The results show no significant differences between both cell types when they were exposed to Ag(+1), Co(+2), Hg(+2), Cr(+3), Cu(+2), Fe(+3) and Cd(+2) metal ions, and extremely significant differences (p < 0.0001) to Zn(+2) exposures. These results demonstrate the suitability of this Cr(VI)-resistant type D. chlorelloides strain as a suitable bioelement to be coupled to a biosensor based on dual-head microalgae strategy to detect and quantify Cr(VI) in water courses and waste water treatment plants. However, some disturbance may be expected, especially when certain analyte species such as zinc are present in water samples tested. The analysis of binary mixtures between Zn(+2) and other heavy metals showed a slight antagonistic phenomenon in all cases, which should not alter the potential Zn(+2) interference in the Cr(+6) detection process.


Subject(s)
Chlorophyta/drug effects , Metals, Heavy/toxicity , Microalgae/drug effects , Photosynthesis/drug effects , Water Pollutants, Chemical/toxicity , Chromium/toxicity , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...