Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7: 40444, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28071729

ABSTRACT

Natural packed tissues are assembled as tessellations of polygonal cells. These include skeletal muscles and epithelial sheets. Skeletal muscles appear as a mosaic composed of two different types of cells: the "slow" and "fast" fibres. Their relative distribution is important for the muscle function but little is known about how the fibre arrangement is established and maintained. In this work we capture the organizational pattern in two different healthy muscles: biceps brachii and quadriceps. Here we show that the biceps brachii muscle presents a particular arrangement, based on the different sizes of slow and fast fibres. By contrast, in the quadriceps muscle an unbiased distribution exists. Our results indicate that the relative size of each cellular type imposes an intrinsic organization into natural tessellations. These findings establish a new framework for the analysis of any packed tissue where two or more cell types exist.


Subject(s)
Muscle, Skeletal/pathology , Biopsy , Humans , Image Processing, Computer-Assisted , Muscle Fibers, Skeletal/pathology , Principal Component Analysis
2.
EMBO J ; 35(1): 77-88, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26598531

ABSTRACT

Morphogenesis is driven by small cell shape changes that modulate tissue organization. Apical surfaces of proliferating epithelial sheets have been particularly well studied. Currently, it is accepted that a stereotyped distribution of cellular polygons is conserved in proliferating tissues among metazoans. In this work, we challenge these previous findings showing that diverse natural packed tissues have very different polygon distributions. We use Voronoi tessellations as a mathematical framework that predicts this diversity. We demonstrate that Voronoi tessellations and the very different tissues analysed share an overriding restriction: the frequency of polygon types correlates with the distribution of cell areas. By altering the balance of tensions and pressures within the packed tissues using disease, genetic or computer model perturbations, we show that as long as packed cells present a balance of forces within tissue, they will be under a physical constraint that limits its organization. Our discoveries establish a new framework to understand tissue architecture in development and disease.


Subject(s)
Chemical Phenomena , Epithelial Cells/physiology , Morphogenesis , Animals , Cell Shape , Cells, Cultured , Chickens , Drosophila , Humans , Hydrostatic Pressure , Models, Biological , Models, Theoretical
3.
Hum Mol Genet ; 24(3): 714-26, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25274776

ABSTRACT

A member of the four-and-a-half-LIM (FHL) domain protein family, FHL1, is highly expressed in human adult skeletal and cardiac muscle. Mutations in FHL1 have been associated with diverse X-linked muscle diseases: scapuloperoneal (SP) myopathy, reducing body myopathy, X-linked myopathy with postural muscle atrophy, rigid spine syndrome (RSS) and Emery-Dreifuss muscular dystrophy. In 2008, we identified a missense mutation in the second LIM domain of FHL1 (c.365 G>C, p.W122S) in a family with SP myopathy. We generated a knock-in mouse model harboring the c.365 G>C Fhl1 mutation and investigated the effects of this mutation at three time points (3-5 months, 7-10 months and 18-20 months) in hemizygous male and heterozygous female mice. Survival was comparable in mutant and wild-type animals. We observed decreased forelimb strength and exercise capacity in adult hemizygous male mice starting from 7 to 10 months of age. Western blot analysis showed absence of Fhl1 in muscle at later stages. Thus, adult hemizygous male, but not heterozygous female, mice showed a slowly progressive phenotype similar to human patients with late-onset muscle weakness. In contrast to SP myopathy patients with the FHL1 W122S mutation, mutant mice did not manifest cytoplasmic inclusions (reducing bodies) in muscle. Because muscle weakness was evident prior to loss of Fhl1 protein and without reducing bodies, our findings indicate that loss of function is responsible for the myopathy in the Fhl1 W122S knock-in mice.


Subject(s)
Forelimb/pathology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Emery-Dreifuss/pathology , Myocardium/pathology , Age of Onset , Animals , Disease Models, Animal , Female , Gene Knock-In Techniques , Hemizygote , Heterozygote , Humans , Male , Mice , Mice, Inbred C57BL , Muscular Dystrophy, Emery-Dreifuss/epidemiology , Muscular Dystrophy, Emery-Dreifuss/genetics , Muscular Dystrophy, Emery-Dreifuss/metabolism , Mutation, Missense
4.
Nat Commun ; 5: 3347, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24572510

ABSTRACT

Ataxia telangiectasia is caused by mutations in ATM and represents a paradigm for cancer predisposition and neurodegenerative syndromes linked to deficiencies in the DNA-damage response. The role of ATM as a key regulator of signalling following DNA double-strand breaks (DSBs) has been dissected in extraordinary detail, but the impact of this process on DSB repair still remains controversial. Here we develop novel genetic and molecular tools to modify the structure of DSB ends and demonstrate that ATM is indeed required for efficient and accurate DSB repair, preventing cell death and genome instability, but exclusively when the ends are irreversibly blocked. We therefore identify the nature of ATM involvement in DSB repair, presenting blocked DNA ends as a possible pathogenic trigger of ataxia telangiectasia and related disorders.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , DNA Breaks, Double-Stranded , DNA Repair/genetics , DNA/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Blotting, Western , Cell Survival/genetics , Cells, Cultured , DNA/metabolism , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , HEK293 Cells , Histones/metabolism , Humans , Mice , Mice, Knockout , Microscopy, Confocal , Models, Genetic , Phosphoric Diester Hydrolases/metabolism , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/metabolism
5.
PLoS One ; 8(11): e79227, 2013.
Article in English | MEDLINE | ID: mdl-24223910

ABSTRACT

Morphogenesis is consequence of lots of small coordinated variations that occur during development. In proliferating stages, tissue growth is coupled to changes in shape and organization. A number of studies have analyzed the topological properties of proliferating epithelia using the Drosophila wing disc as a model. These works are based in the existence of a fixed distribution of these epithelial cells according to their number of sides. Cell division, cell rearrangements or a combination of both mechanisms have been proposed to be responsible for this polygonal assembling. Here, we have used different system biology methods to compare images from two close proliferative stages that present high morphological similarity. This approach enables us to search for traces of epithelial organization. First, we show that geometrical and network characteristics of individual cells are mainly dependent on their number of sides. Second, we find a significant divergence between the distribution of polygons in epithelia from mid-third instar larva versus early prepupa. We show that this alteration propagates into changes in epithelial organization. Remarkably, only the variation in polygon distribution driven by morphogenesis leads to progression in epithelial organization. In addition, we identify the relevant features that characterize these rearrangements. Our results reveal signs of epithelial homogenization during the growing phase, before the planar cell polarity pathway leads to the hexagonal packing of the epithelium during pupal stages.


Subject(s)
Cell Proliferation , Cell Shape , Epithelial Cells/cytology , Epithelium/growth & development , Algorithms , Analysis of Variance , Animals , Cell Division , Cell Polarity , Computer Simulation , Drosophila/cytology , Drosophila/growth & development , Imaginal Discs/growth & development , Larva/growth & development , Models, Biological , Morphogenesis , Principal Component Analysis , Pupa/growth & development , Wings, Animal/cytology , Wings, Animal/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...