Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinform Biol Insights ; 16: 11779322221091739, 2022.
Article in English | MEDLINE | ID: mdl-35478994

ABSTRACT

This work explores how much the traditional approach to modeling and simulation of biological systems, specifically cell signaling networks, can be increased and improved by integrating big data, data mining, and machine learning techniques. Specifically, we first model, simulate, validate, and calibrate the behavior of the PI3K/AKT/mTOR cancer-related signaling pathway. Subsequently, once the behavior of the simulated signaling network matches the expected behavior, the capacity of the computational simulation is increased to grow data (data farming). First, we use big data techniques to extract, collect, filter, and store large volumes of data describing all the interactions among the simulated cell signaling system components over time. Afterward, we apply data mining and machine learning techniques-specifically, exploratory data analysis, feature selection techniques, and supervised neural network models-to the resulting biological dataset to obtain new inferences and knowledge about this biological system. The results showed how the traditional approach to the simulation of biological systems could be enhanced and improved by incorporating big data, data mining, and machine learning techniques, which significantly contributed to increasing the predictive power of the simulation.

2.
Entropy (Basel) ; 24(2)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35205491

ABSTRACT

Medical data includes clinical trials and clinical data such as patient-generated health data, laboratory results, medical imaging, and different signals coming from continuous health monitoring. Some commonly used data analysis techniques are text mining, big data analytics, and data mining. These techniques can be used for classification, clustering, and machine learning tasks. Machine learning could be described as an automatic learning process derived from concepts and knowledge without deliberate system coding. However, finding a suitable machine learning architecture for a specific task is still an open problem. In this work, we propose a machine learning model for the multi-class classification of medical data. This model is comprised of two components-a restricted Boltzmann machine and a classifier system. It uses a discriminant pruning method to select the most salient neurons in the hidden layer of the neural network, which implicitly leads to a selection of features for the input patterns that feed the classifier system. This study aims to investigate whether information-entropy measures may provide evidence for guiding discriminative pruning in a neural network for medical data processing, particularly cancer research, by using three cancer databases: Breast Cancer, Cervical Cancer, and Primary Tumour. Our proposal aimed to investigate the post-training neuronal pruning methodology using dissimilarity measures inspired by the information-entropy theory; the results obtained after pruning the neural network were favourable. Specifically, for the Breast Cancer dataset, the reported results indicate a 10.68% error rate, while our error rates range from 10% to 15%; for the Cervical Cancer dataset, the reported best error rate is 31%, while our proposal error rates are in the range of 4% to 6%; lastly, for the Primary Tumour dataset, the reported error rate is 20.35%, and our best error rate is 31%.

SELECTION OF CITATIONS
SEARCH DETAIL
...