Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 11(484)2019 03 20.
Article in English | MEDLINE | ID: mdl-30894502

ABSTRACT

Inhibiting MYC has long been considered unfeasible, although its key role in human cancers makes it a desirable target for therapeutic intervention. One reason for its perceived undruggability was the fear of catastrophic side effects in normal tissues. However, we previously designed a dominant-negative form of MYC called Omomyc and used its conditional transgenic expression to inhibit MYC function both in vitro and in vivo. MYC inhibition by Omomyc exerted a potent therapeutic impact in various mouse models of cancer, causing only mild, well-tolerated, and reversible side effects. Nevertheless, Omomyc has been so far considered only a proof of principle. In contrast with that preconceived notion, here, we show that the purified Omomyc mini-protein itself spontaneously penetrates into cancer cells and effectively interferes with MYC transcriptional activity therein. Efficacy of the Omomyc mini-protein in various experimental models of non-small cell lung cancer harboring different oncogenic mutation profiles establishes its therapeutic potential after both direct tissue delivery and systemic administration, providing evidence that the Omomyc mini-protein is an effective MYC inhibitor worthy of clinical development.


Subject(s)
Cell-Penetrating Peptides/pharmacology , Peptide Fragments/pharmacology , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell-Penetrating Peptides/pharmacokinetics , Cell-Penetrating Peptides/therapeutic use , DNA/metabolism , Disease Models, Animal , E-Box Elements/genetics , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice, Inbred C57BL , Peptide Fragments/administration & dosage , Peptide Fragments/pharmacokinetics , Peptide Fragments/therapeutic use , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Protein Multimerization/drug effects , Proto-Oncogene Proteins c-myc/administration & dosage , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/pharmacokinetics , Proto-Oncogene Proteins c-myc/pharmacology , Proto-Oncogene Proteins c-myc/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...