Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 152: 45-53, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26992494

ABSTRACT

Volatile profiles of 63 black and 38 green teas from different countries were analysed with Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) both for tea leaves and tea infusion. The headspace volatile fingerprints were collected and the tea classes and geographical origins were tracked with pattern recognition techniques. The high mass resolution achieved by ToF mass analyser provided determination of sum formula and tentative identifications of the mass peaks. The results provided successful separation of the black and green teas based on their headspace volatile emissions both from the dry tea leaves and their infusions. The volatile fingerprints were then used to build different classification models for discrimination of black and green teas according to their geographical origins. Two different cross validation methods were applied and their effectiveness for origin discrimination was discussed. The classification models showed a separation of black and green teas according to geographical origins the errors being mostly between neighbouring countries.


Subject(s)
Camellia sinensis/chemistry , Mass Spectrometry , Protons , Tea/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Food Quality , Geography , Time Factors
2.
Anal Chem ; 86(23): 11696-704, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25372898

ABSTRACT

Using proton-transfer-reaction time-of-flight mass-spectrometry (PTR-ToF-MS), we investigated the extraction dynamic of 95 ion traces in real time (time resolution = 1 s) during espresso coffee preparation. Fifty-two of these ions were tentatively identified. This was achieved by online sampling of the volatile organic compounds (VOCs) in close vicinity to the coffee flow, at the exit of the extraction hose of the espresso machine (single serve capsules). Ten replicates of six different single serve coffee types were extracted to a final weight between 20-120 g, according to the recommended cup size of the respective coffee capsule (Ristretto, Espresso, and Lungo), and analyzed. The results revealed considerable differences in the extraction kinetics between compounds, which led to a fast evolution of the volatile profiles in the extract flow and consequently to an evolution of the final aroma balance in the cup. Besides exploring the time-resolved extraction dynamics of VOCs, the dynamic data also allowed the coffees types (capsules) to be distinguished from one another. Both hierarchical cluster analysis (HCA) and principal component analysis (PCA) showed full separation between the coffees types. The methodology developed provides a fast and simple means of studying the extraction dynamics of VOCs and differentiating between different coffee types.


Subject(s)
Coffee/chemistry , Online Systems , Volatile Organic Compounds/analysis , Cluster Analysis , Mass Spectrometry , Principal Component Analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...