Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Neurosci Lett ; 830: 137770, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38616004

ABSTRACT

Women are disproportionately affected by stress-related disorders like depression. In our prior research, we discovered that females exhibit lower basal hypothalamic reelin levels, and these levels are differentially influenced by chronic stress induced through repeated corticosterone (CORT) injections. Although epigenetic mechanisms involving DNA methylation and the formation of repressor complexes by DNA methyl-transferases (DNMTs) and Methyl-CpG binding protein 2 (MeCP2) have been recognized as regulators of reelin expression in vitro, there is limited understanding of the impact of stress on the epigenetic regulation of reelin in vivo and whether sex differences exist in these mechanisms. To address these questions, we conducted various biochemical analyses on hypothalamic brain samples obtained from male and female rats previously treated with either 21 days of CORT (40 mg/kg) or vehicle (0.9 % saline) subcutaneous injections. Upon chronic CORT treatment, a reduction in reelin fragment NR2 was noted in males, while the full-length molecule remained unaffected. This decrease paralleled with an elevation in MeCP2 and a reduction in DNMT3a protein levels only in males. Importantly, sex differences in baseline and CORT-induced reelin protein levels were not associated with changes in the methylation status of the Reln promoter. These findings suggest that CORT-induced reelin decreases in the hypothalamus may be a combination of alterations in downstream processes beyond gene transcription. This research brings novel insights into the sexually distinct consequences of chronic stress, an essential aspect to understand, particularly concerning its role in the development of depression.


Subject(s)
Cell Adhesion Molecules, Neuronal , Corticosterone , DNA Methyltransferase 3A , Extracellular Matrix Proteins , Hypothalamus , Methyl-CpG-Binding Protein 2 , Nerve Tissue Proteins , Reelin Protein , Serine Endopeptidases , Animals , Female , Male , Rats , Cell Adhesion Molecules, Neuronal/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A/metabolism , Extracellular Matrix Proteins/metabolism , Hypothalamus/metabolism , Hypothalamus/drug effects , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Serine Endopeptidases/metabolism , Sex Characteristics , Rats, Long-Evans
2.
Article in English | MEDLINE | ID: mdl-38552775

ABSTRACT

There is an urgent need for novel antidepressants, given that approximately 30% of those diagnosed with depression do not respond adequately to first-line treatment. Additionally, monoaminergic-based antidepressants have a substantial therapeutic time-lag, often taking months to reach full therapeutic effect. Ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist is the only current effective rapid-acting antidepressant, demonstrating efficacy within hours and lasting up to two weeks with an acute dose. Reelin, an extracellular matrix glycoprotein, has demonstrated rapid-acting antidepressant-like effects at 24 h, however the exact timescale of these effects has not been investigated. To determine the short and long-term effects of reelin, female Long Evans rats (n = 120) underwent a chronic corticosterone (CORT; or vehicle) paradigm (40 mg/kg, 21 days). On day 21, rats were treated with reelin (3µg; i.v.), ketamine (10 mg/kg; i.p.), both reelin and ketamine (same doses), or vehicle (saline). Behavioural and biological effects were then evaluated at 1 h, 6 h, 12 h, and 1 week after treatment. The 1-week cohort continued CORT injections to ensure the effect of chronic stress was not lost. Individually, both reelin and ketamine significantly rescued CORT-induced behaviour and hippocampal reelin expression at all timepoints. Ketamine rescued a decrease in dendritic maturity as induced by CORT. Synergistic effects of reelin and ketamine appeared at 1-week, suggesting a potential additive effect of the antidepressant-like actions. Taken together, this study provides further support for reelin-based therapeutics to develop rapid-acting antidepressant.


Subject(s)
Corticosterone , Ketamine , Animals , Female , Rats , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Corticosterone/metabolism , Depression/drug therapy , Depression/chemically induced , Hippocampus/metabolism , Ketamine/pharmacology , Ketamine/therapeutic use , Rats, Long-Evans , Reelin Protein/pharmacology , Reelin Protein/therapeutic use
3.
Int J Mol Sci ; 25(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38255890

ABSTRACT

Current pharmacological treatments for depression fail to produce adequate remission in a significant proportion of patients. Increasingly, other systems, such as the microbiome-gut-brain axis, are being looked at as putative novel avenues for depression treatment. Dysbiosis and dysregulation along this axis are highly comorbid with the severity of depression symptoms. The endogenous extracellular matrix protein reelin is present in all intestinal layers as well as in myenteric and submucosal ganglia, and its receptors are also present in the gut. Reelin secretion from subepithelial myofibroblasts regulates cellular migration along the crypt-villus axis in the small intestine and colon. Reelin brain expression is downregulated in mood and psychotic disorders, and reelin injections have fast antidepressant-like effects in animal models of depression. This review seeks to discuss the roles of reelin in the gastrointestinal system and propose a putative role for reelin actions in the microbiota-gut-brain axis in the pathogenesis and treatment of depression, primarily reflecting on alterations in gut epithelial cell renewal and in the clustering of serotonin transporters.


Subject(s)
Antidepressive Agents , Brain-Gut Axis , Depression , Enteric Nervous System , Reelin Protein , Animals , Humans , Affect , Antidepressive Agents/therapeutic use , Depression/drug therapy , Depression/metabolism , Enteric Nervous System/metabolism , Reelin Protein/metabolism
4.
eNeuro ; 10(8)2023 08.
Article in English | MEDLINE | ID: mdl-37550058

ABSTRACT

Over the past decade, ketamine, an NMDA receptor antagonist, has demonstrated fast-acting antidepressant effects previously unseen with monoaminergic-based therapeutics. Concerns regarding psychotomimetic effects limit the use of ketamine for certain patient populations. Reelin, an extracellular matrix glycoprotein, has shown promise as a putative fast-acting antidepressant in a model of chronic stress. However, research has not yet demonstrated the changes that occur rapidly after peripheral reelin administration. To address this key gap in knowledge, male Long-Evans rats underwent a chronic corticosterone (CORT; or vehicle) paradigm (40 mg/kg, 21 d). On day 21, rats were then administered an acute dose of ketamine (10 mg/kg, i.p.), reelin (3 µg, i.v.), or vehicle. Twenty-four hours after administration, rats underwent behavioral or in vivo electrophysiological testing before killing. Immunohistochemistry was used to confirm changes in hippocampal reelin immunoreactivity. Lastly, the hippocampus was microdissected from fresh tissue to ascertain whole cell and synaptic-specific changes in protein expression through Western blotting. Chronic corticosterone induced a chronic stress phenotype in the forced swim test and sucrose preference test (SPT). Both reelin and ketamine rescued immobility and swimming, however reelin alone rescued latency to immobility. In vivo electrophysiology revealed decreases in hippocampal long-term potentiation (LTP) after chronic stress which was increased significantly by both ketamine and reelin. Reelin immunoreactivity in the dentate gyrus paralleled the behavioral and electrophysiological findings, but no significant changes were observed in synaptic-level protein expression. This exploratory research supports the putative rapid-acting antidepressant effects of an acute dose of reelin across behavioral, electrophysiological, and molecular measures.


Subject(s)
Ketamine , Rats , Male , Animals , Ketamine/pharmacology , Corticosterone/pharmacology , Corticosterone/metabolism , Rats, Long-Evans , Benchmarking , Hippocampus/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/metabolism , Depression
5.
Chronic Stress (Thousand Oaks) ; 7: 24705470231164920, 2023.
Article in English | MEDLINE | ID: mdl-36970446

ABSTRACT

Reelin, an extracellular matrix protein with putative antidepressant-like properties, becomes dysregulated by chronic stress. Improvement in cognitive dysfunction and depression-like behavior induced by chronic stress has been reported with both intrahippocampal and intravenous Reelin treatment but the mechanisms responsible are not clear. To determine if treatment with Reelin modifies chronic stress-induced dysfunction in immune organs and whether this relates to behavioral and/or neurochemical outcomes, spleens were collected from both male (n = 62) and female (n = 53) rats treated with daily corticosterone injections for three weeks that received Reelin or vehicle. Reelin was intravenously administered once on the final day of chronic stress, or repeatedly, with weekly treatments throughout chronic stress. Behavior was assessed during the forced swim test and the object-in-place test. Chronic corticosterone caused significant atrophy of the spleen white pulp, but treatment with a single shot of Reelin restored white pulp in both males and females. Repeated Reelin injections also resolved atrophy in females. Correlations were observed between recovery of white pulp atrophy and recovery of behavioral deficits and expression of both Reelin and glutamate receptor 1 in the hippocampus, supporting a role of the peripheral immune system in the recovery of chronic stress-induced behaviors following treatment with Reelin. Our data adds to research indicating Reelin could be a valuable therapeutic target for chronic stress-related disorders including major depression.

6.
Biomedicines ; 10(12)2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36551970

ABSTRACT

A healthy diet has been highly associated with a decreased risk for mental health problems such as major depression. Evidence from human studies shows that diet can influence mood but there is a poor understanding of the molecular mechanisms behind these effects, especially the role of epigenetic alterations in the brain. Our objective was to use the Preferred Reporting Items for Systematic Reviews and Meta-Analysis extension for Scoping Reviews (PRISMA-ScR) format to gather all recent studies using animal models that investigate direct or indirect (on the offspring) effects of diet on depressive symptoms, including studies that assess epigenetic mechanisms in the brain. In this format, two authors conducted independent database searches of PubMed, Web of Science, and Academic search premier using one search block "diet epigenetics depression" to find papers published between 2000 and 2022. Relevant studies were selected using pre-defined inclusion/exclusion criteria that were performed independently by the two authors before a subset of studies were selected for qualitative analysis. A total of 11 studies met the inclusion criteria for this systematic scoping review. We found that the literature focuses primarily on the effects of individual nutrients, instead of a specific diet, on despair-like behaviour and anxiety. Studies are heterogenous with the techniques used to asses epigenetic changes in the brain and therefore making it hard to reach common mechanistic explanations. However, all studies report diet-induced changes in the epigenome mainly by the action of DNA methylation, histone acetylation and microRNAs that are parallelel with changes in behaviour. Moreover studies show that inadequate maternal diets can make the offspring more susceptible to develop anxiety and depressive-like behaviour later in life, which is paralleled with changes in the epigenome. Overall, this systematic review shows that there is some literature suggesting a role of brain epigenetics on the diet-induced protective or detrimental effects, specifically on anxiety and depressive-like behaviour. However, studies are limited, lacking the study of some types of diets, behavioural tasks or epigenetic mechanisms. Nevertherless, it shows the importance of genome-environment interactions, bringing new insights towards mechanisms that could be involved in the pathophysiology of mood disorders as well as putative therapeutic targets.

7.
Horm Behav ; 146: 105267, 2022 11.
Article in English | MEDLINE | ID: mdl-36274499

ABSTRACT

Repeated exposure to the stress hormone corticosterone results in depressive-like behaviours paralleled by the downregulation of hippocampal reelin expression. Reelin is expressed in key neural populations involved in the stress response, but whether its hypothalamic expression is sex-specific or involved in sex-specific vulnerability to stress is unknown. Female and male rats were treated with either daily vehicle or corticosterone injections (40 mg/kg) for 21 days. Thereafter, they were subjected to several behavioural tasks before being sacrificed to allow the analysis of reelin expression in hypothalamic nuclei. The basal density of reelin-positive cells in males was significantly higher in the paraventricular nucleus (19 %) and in the medial preoptic area (51 %) compared to females. Chronic corticosterone injections increased the immobility time in the forced swim test in males (107 %) and females (108 %) and decreased the exploration of the elevated plus maze in males (34 %). Corticosterone also caused a significant decrease in the density of reelin-positive cells in males, in both ventrodorsal (37 %) and ventrolateral (32 %) subdivisions of the paraventricular nucleus, while not affecting females. Moreover, in the paraventricular nucleus of males, 30 % of the basal reelin-positive cells co-expressed oxytocin while only 17.5 % did in females, showing a positive correlation between reelin and oxytocin levels. Chronic corticosterone did not significantly affect co-localization levels. For the first time, this study shows that there is a sexually dimorphic subpopulation of reelin-positive neurons in the paraventricular nucleus that can be differentially affected by chronic stress.


Subject(s)
Corticosterone , Sex Characteristics , Rats , Animals , Female , Male , Corticosterone/pharmacology , Corticosterone/metabolism , Oxytocin/metabolism , Hypothalamus/metabolism , Paraventricular Hypothalamic Nucleus/metabolism
8.
Neuropharmacology ; 211: 109043, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35341790

ABSTRACT

Chronic stress is a significant risk factor for depression onset. The effects of chronic stress can be studied preclinically using a corticosterone (CORT)-administration paradigm that results in a phenotype of depressive-like behavior associated with neurochemical abnormalities in brain regions like the hippocampus. We have recently shown that intrahippocampal infusions of Reelin have a fast effect in normalizing CORT-induced behavioral and neurochemical alterations. Reelin is also expressed in multiple peripheral systems and is found in blood plasma which prompted us to investigate whether peripheral intravenous (i.v.) Reelin injections could also result in antidepressant (ATD)-like actions. Repeated i.v. injections of Reelin were effective in rescuing the CORT-induced increases in forced-swim-test immobility in male and female rats, decreases in Reelin-immunopositive cells in the dentate gyrus subgranular zone, the expression of hippocampal GABAAß2/3, GluA1, and GluN2B receptors, and serotonin transporter (SERT) membrane protein clustering (MPC) in blood lymphocytes. However, Reelin had only a partial effect on the number and maturation rate of dentate gyrus newborn cells. CORT and Reelin did not affect open field test behavior. After evaluating the effects of multiple Reelin injections, we demonstrated that a single Reelin injection administered at the end of CORT treatment could rescue in 24 h the behavioral (forced-swim-test and object-in-place test), as well as SERT MPC and neurochemical effects of CORT. These findings show that i.v. injections of Reelin have fast ATD-like effects associated with the restoration of hippocampal neurochemical deficits. Although additional mechanistic and pharmacokinetic studies are necessary, our data open the possibility to develop Reelin-based therapeutics with putative fast-ATD activity.


Subject(s)
Corticosterone , Reelin Protein , Animals , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacology , Behavior, Animal , Depression/metabolism , Disease Models, Animal , Female , Hippocampus , Male , Rats
9.
Cells ; 11(4)2022 02 21.
Article in English | MEDLINE | ID: mdl-35203405

ABSTRACT

Methyl-CpG-binding protein 2 (MeCP2) is a transcriptional regulator that is highly abundant in the brain. It binds to methylated genomic DNA to regulate a range of physiological functions implicated in neuronal development and adult synaptic plasticity. MeCP2 has mainly been studied for its role in neurodevelopmental disorders, but alterations in MeCP2 are also present in stress-related disorders such as major depression. Impairments in both stress regulation and synaptic plasticity are associated with depression, but the specific mechanisms underlying these changes have not been identified. Here, we review the interplay between stress, synaptic plasticity, and MeCP2. We focus our attention on the transcriptional regulation of important neuronal plasticity genes such as BDNF and reelin (RELN). Moreover, we provide evidence from recent studies showing a link between chronic stress-induced depressive symptoms and dysregulation of MeCP2 expression, underscoring the role of this protein in stress-related pathology. We conclude that MeCP2 is a promising target for the development of novel, more efficacious therapeutics for the treatment of stress-related disorders such as depression.


Subject(s)
Depression , Methyl-CpG-Binding Protein 2 , Neuronal Plasticity , Stress, Psychological , Brain-Derived Neurotrophic Factor/metabolism , Depression/genetics , Gene Expression Regulation , Humans , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Stress, Psychological/genetics
10.
Res Involv Engagem ; 7(1): 21, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33902751

ABSTRACT

As patient-oriented research gains popularity in clinical research, the lack of patient input in foundational science grows more evident. Research has shown great utility in active partnerships between patient partners and scientists, yet many researchers are still hesitant about listening to the voices of those with lived experience guide and shape their experiments. Mental health has been a leading area for patient movements such as survivor-led research, however the stigma experienced by these patients creates difficulties not present in other health disciplines. The emergence of COVID-19 has also created unique circumstances that need to be addressed. Through this lens, we have taken experiences from our patient partners, students, and primary investigator to create recommendations for the better facilitation of patient-oriented research in foundational science in Canada. With these guidelines, from initial recruitment and leading to sustaining meaningful partnerships, we hope to encourage other researchers that patient-oriented research is necessary for the future of mental health research and foundational science.

11.
Micromachines (Basel) ; 11(2)2020 Feb 23.
Article in English | MEDLINE | ID: mdl-32102205

ABSTRACT

Wound infection is a major clinical challenge that can significantly delay the healing process, can create pain, and requires prolonged hospital stays. Pre-clinical research to evaluate new drugs normally involves animals. However, ethical concerns, cost, and the challenges associated with interspecies variation remain major obstacles. Tissue engineering enables the development of in vitro human skin models for drug testing. However, existing engineered skin models are representative of healthy human skin and its normal functions. This paper presents a functional infected epidermis model that consists of a multilayer epidermis structure formed at an air-liquid interface on a hydrogel matrix and a three-dimensionally (3D) printed vascular-like network. The function of the engineered epidermis is evaluated by the expression of the terminal differentiation marker, filaggrin, and the barrier function of the epidermis model using the electrical resistance and permeability across the epidermal layer. The results showed that the multilayer structure enhances the electrical resistance by 40% and decreased the drug permeation by 16.9% in the epidermis model compared to the monolayer cell culture on gelatin. We infect the model with Escherichia coli to study the inflammatory response of keratinocytes by measuring the expression level of pro-inflammatory cytokines (interleukin 1 beta and tumor necrosis factor alpha). After 24 h of exposure to Escherichia coli, the level of IL-1ß and TNF-α in control samples were 125 ± 78 and 920 ± 187 pg/mL respectively, while in infected samples, they were 1429 ± 101 and 2155.5 ± 279 pg/mL respectively. However, in ciprofloxacin-treated samples the levels of IL-1ß and TNF-α without significant difference with respect to the control reached to 246 ± 87 and 1141.5 ± 97 pg/mL respectively. The robust fabrication procedure and functionality of this model suggest that the model has great potential for modeling wound infections and drug testing.

12.
Int J Pharm ; 237(1-2): 107-18, 2002 Apr 26.
Article in English | MEDLINE | ID: mdl-11955809

ABSTRACT

Statistical experimental design was applied to evaluate the influence of some process and formulation variables and possible interactions among such variables, on didanosine release from directly-compressed matrix tablets based on blends of two insoluble polymers, Eudragit RS-PM and Ethocel 100, with the final goal of drug release behavior optimization. The considered responses were the percent of drug released at three determined times, the dissolution efficiency at 6 h and the time to dissolve 10% of drug. Four independent variables were considered: tablet compression force, ratio between the polymers and their particle size, and drug content. The preliminary screening step, carried out by means of a 12-run asymmetric screening matrix according to a D-optimal design strategy, allowed evaluation of the effects of different levels of each variable. The drug content and the polymers ratio had the most important effect on drug release, which, moreover, was favored by greater polymers particle size; on the contrary the compression force did not have a significant effect. The Doehlert design was then applied for a response-surface study, in order to study in depth the effects of the most important variables. The desirability function was used to simultaneously optimize the five considered responses, each having a different target. This procedure allowed selection, in the studied experimental domain, of the best formulation conditions to optimize drug release rate. The experimental values obtained from the optimized formulation highly agreed with the predicted values. The results demonstrated the reliability of the model in the preparation of extended-release matrix tablets with predictable drug release profiles.


Subject(s)
Anti-HIV Agents/pharmacokinetics , Didanosine/pharmacokinetics , Models, Statistical , Anti-HIV Agents/chemistry , Chemistry, Pharmaceutical , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Didanosine/chemistry , Tablets/chemistry , Tablets/pharmacokinetics
13.
Int J Pharm ; 234(1-2): 213-21, 2002 Mar 02.
Article in English | MEDLINE | ID: mdl-11839452

ABSTRACT

Didanosine, a nucleoside analog used in the treatment of acquired immuno deficiency syndrome (AIDS), has been incorporated into directly compressed monolythic matrices whose excipients were mixtures at different ratios of a methacrylic resin (Eudragit RSPM) and an ethylcellulose (Ethocel 100), both water-insoluble and pH-independent polymers. Technological characterization (drug particle morphology, mean weight, diameter, thickness and hardness of tablets) was carried out and in vitro drug release behaviour was measured using the USP basket apparatus. The effect of varying the Eudragit-Ethocel ratio, as well as the drug-polymeric matrix ratio, was evaluated. The results showed the suitability of Eudragit-Ethocel mixtures as matrix-forming material for didanosine sustained release formulations. Combination of the moderate swelling properties of Eudragit RSPM with the plastic properties of the more hydrophobic Ethocel 100 allowed suitable modulation of didanosine release.


Subject(s)
Anti-HIV Agents/administration & dosage , Didanosine/administration & dosage , Anti-HIV Agents/chemistry , Cellulose/analogs & derivatives , Chromatography, High Pressure Liquid , Delayed-Action Preparations , Didanosine/chemistry , Hardness , Hydrogen-Ion Concentration , Image Processing, Computer-Assisted , Methacrylates , Microscopy, Electron, Scanning , Particle Size , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...