Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 34(32)2023 May 24.
Article in English | MEDLINE | ID: mdl-37163999

ABSTRACT

The microwave detection capability of GaN-based asymmetric planar nanodiodes (so-called Self-Switching Diode, SSD, due to its non-linearity) has been characterized in a wide temperature range, from 70 K up to 300 K. At low temperature, microwave measurements reveal an enhancement of the responsivity at frequencies below 1 GHz, which, together with a pronounced hysteresis in the DC curves, indicate a significant influence of the surface states. This leads to a significant variability and non-repeatability which needs to be reduced since it degrades the accuracy of the detection. For this sake, the RF characterization was repeated after applying a positive/negative voltage able to fill/empty the surface states in order to have a well-established preconditioned state. As a consequence of the positive pre-soak bias, a significant enhancement of the measured responsivity, with a × 10 increase at low temperature. The RF detection measurements after such preconditioning contains a time dependence induced by the slow discharge mechanism of the traps, so that the improved responsivity remains even after 100s of seconds. On the other hand, a negative voltage pre-soak benefits the discharge process, thus suppressing the low frequency dispersion and the important variability of the detection without the pre-conditioning step. We also show that the relation between the voltage and current responsivities in each case allows to explain the impact of the surface charges in terms of the device impedance.

2.
Nanotechnology ; 31(40): 405204, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-32544891

ABSTRACT

The zero-bias microwave detection capability of self-switching diodes (SSDs) based on AlGaN/GaN is analyzed in a wide temperature range, from 10 K to 300 K. The measured responsivity shows an anomalous enhancement at low temperature, while the detected voltage exhibits a roll-off in frequency, which can be attributed to the presence of surface and bulk traps. To gain a deep insight into this behavior, a systematic DC and AC characterization of the diodes has been carried out in the mentioned temperature range. DC results confirm the existence of traps and AC measurements allow us to identify their properties. In particular, impedance studies enable to distinguish two types of traps: at the lateral surfaces of the channel, with a wide spread of relaxation times, and in the bulk.

SELECTION OF CITATIONS
SEARCH DETAIL
...