Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 9(10)2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31590320

ABSTRACT

A simple and low-cost alternating current (AC)-based method, without electrolyte correction, is proposed (Electrochemical Impedance Spectroscopy (EIS)-Zero Gap Cell) for the determination of ohmic contribution of diaphragms. The effectiveness of the proposed methodology was evaluated by using a commercial Alkaline Water Electrolysis (AWE) diaphragm (Zirfon®). Furthermore, the results were compared with two conventional electrochemical methodologies for calculating the separator resistance, based on direct current (DC), and AC measurements, respectively. Compared with the previous techniques, the proposed approach reported more accurate and precise values of resistance for new and aged samples. Compared with the manufacturer reference, the obtained error values for new samples were 0.33%, 5.64%, and 41.7%, respectively for EIS-Zero gap cell, AC and DC methods, confirming the validity and convenience of the proposed technique.

2.
Inorg Chem ; 48(12): 5540-54, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19441840

ABSTRACT

The preparation of new chiral bis(pyrazol-1-yl)methane-based NNO-donor scorpionate ligands in the form of the lithium derivatives [Li(bpzb)(THF)] [1; bpzb = 1,1-bis(3,5-dimethylpyrazol-1-yl)-3,3-dimethyl-2-butoxide] and [Li(bpzte)(THF)] [2; bpzte = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1-p-tolylethoxide] or the alcohol ligands (bpzbH) (3) and (bpzteH) (4) has been carried out by 1,2-addition reactions with trimethylacetaldehyde or p-tolualdehyde. The separation of a racemic mixture of the alcohol ligand 3 has been achieved and gave an enantiopure NNO alcohol-scorpionate ligand in three synthetic steps: (i) 1,2-addition of the appropriate lithium derivative to trimethylacetaldehyde, (ii) esterification and separation of diastereoisomers 5, (iii) saponification. Subsequently, the enantiopure scorpionate ligand (R,R)-bpzmmH {6; R,R-bpzmmH = (1R)-1-[(1R)-6,6-dimethylbicyclo[3.1.1]2-hepten-2-yl]-2,2-bis(3,5-dimethylpyrazol-1-yl)ethanol} was obtained with an excellent diastereomeric excess (>99% de) in a one-pot process utilizing the aldehyde (1R)-(-)-myrtenal as a chiral substrate to control the stereochemistry of the newly created asymmetric center. These new chiral heteroscorpionate ligands reacted with [MX(4)] (M = Ti, Zr; X = NMe(2), O(i)Pr, OEt, O(t)Bu) in a 1:1 molar ratio in toluene to give, after the appropriate workup, the complexes [MX(3)(kappa(3)-NNO)] (7-18). The reaction of Me(3)SiCl with [Ti(NMe(2))(3)(bpzb)] (7) or [Ti(NMe(2))(3)(R,R-bpzmm)] (11) in different molar ratios gave the halide-amide-containing complexes [TiCl(NMe(2))(2)(kappa(3)-NNO)] (19 and 20) and [TiCl(2)(NMe(2))(kappa(3)-NNO)] (21 and 22) and the halide complex [TiCl(3)(kappa(3)-NNO)] (23 and 24). The latter complexes can also be obtained by reaction of the lithium compound 1 with TiCl(4)(THF)(2) and deprotonation of the alcohol group of 6 with NaH, followed by reaction with TiCl(4)(THF)(2) in a 1:1 molar ratio, respectively. Isolation of only one of the three possible diastereoisomers of the complexes 19 and 22 revealed that chiral induction from the ligand to the titanium center took place. The structures of these complexes were elucidated by (1)H and (13)C{(1)H} NMR spectroscopy, and the X-ray crystal structures of 3-7, 12, and 24 were also established. Finally, we evaluated the influence that the chiral center of the new heteroscorpionate complexes has on the enantioselectivity of the asymmetric epoxidation of allylic alcohols.

3.
Inorg Chem ; 46(21): 8475-7, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17883268

ABSTRACT

The work described here represents the first example in which an efficient and highly diastereoselective nucleophilic 1,2-addition of an organolithium reagent has been performed on a carbonylic prostereogenic center to give an enantiopure scorpionate ligand in only one step.

4.
Dalton Trans ; (36): 4359-70, 2006 Sep 28.
Article in English | MEDLINE | ID: mdl-16967120

ABSTRACT

The reaction of different types of bis(pyrazol-1-yl)methane derivatives with Bu(n)Li and alkyl or aryl-containing-isocyanates or isothiocyanates, some of these as chiral reagents, gives rise to the preparation of new heteroscorpionate ligands in the form of the lithium derivatives [Li(NNE)]2 (1-10), although a similar process with trimethylsilyl isocyanate or isothiocyanate gave the complexes [Li(NCX)(bdmpzs)(THF)](X = O, 11; X = S, 12)[bdmpzs = bis(3,5-dimethylpyrazol-1-yl)trimethylsilylmethane]. Compounds 1-8 reacted with [TiCl4(THF)2] or [MCl4](M = Zr, Hf) to give a series of cationic complexes [MCl3{kappa3-NNE(H)}]Cl (13-36) where the heteroscorpionate ligand contains either an acetamide or thioacetamide group resulting from the protonation of the corresponding acetamidate or thioacetamidate. However, under appropriate experimental conditions neutral Ti complexes were isolated-namely [TiClx(NMe2)3-x(S-mbbpam)](37-39)[S-mbbpam =(S)-(-)-N-alpha-methylbenzyl-2,2-bis(3,5-dimethylpyrazol-1-yl)acetamidate]. Finally, two alkoxide-containing titanium complexes [TiClx(OR)3-x(S-mbbpamH)]Cl (40-41) were also prepared. The structures of these complexes have been determined by spectroscopic methods and, in addition, the X-ray crystal structures of 1, 12, and 19 were also established.

SELECTION OF CITATIONS
SEARCH DETAIL
...