Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Imaging ; 10(2)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38392096

ABSTRACT

This paper proposes the transformation S→C→, where S is a digital gray-level image and C→ is a vector expressed through the textural space. The proposed transformation is denominated Vectorial Image Representation on the Texture Space (VIR-TS), given that the digital image S is represented by the textural vector C→. This vector C→ contains all of the local texture characteristics in the image of interest, and the texture unit T→ entertains a vectorial character, since it is defined through the resolution of a homogeneous equation system. For the application of this transformation, a new classifier for multiple classes is proposed in the texture space, where the vector C→ is employed as a characteristics vector. To verify its efficiency, it was experimentally deployed for the recognition of digital images of tree barks, obtaining an effective performance. In these experiments, the parametric value λ employed to solve the homogeneous equation system does not affect the results of the image classification. The VIR-TS transform possesses potential applications in specific tasks, such as locating missing persons, and the analysis and classification of diagnostic and medical images.

2.
Sensors (Basel) ; 23(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37896461

ABSTRACT

In industrial applications based on texture classification, efficient and fast classifiers are extremely useful for quality control of industrial processes. The classifier of texture images has to satisfy two requirements: It must be efficient and fast. In this work, a texture unit is coded in parallel, and using observation windows larger than 3×3, a new texture spectrum called Texture Spectrum based on the Parallel Encoded Texture Unit (TS_PETU) is proposed, calculated, and used as a characteristic vector in a multi-class classifier, and then two image databases are classified. The first database contains images from the company Interceramic®® and the images were acquired under controlled conditions, and the second database contains tree stems and the images were acquired in natural environments. Based on our experimental results, the TS_PETU satisfied both requirements (efficiency and speed), was developed for binary images, and had high efficiency, and its compute time could be reduced by applying parallel coding concepts. The classification efficiency increased by using larger observational windows, and this one was selected based on the window size. Since the TS_PETU had high efficiency for Interceramic®® tile classification, we consider that the proposed technique has significant industrial applications.

3.
Sensors (Basel) ; 20(2)2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31941162

ABSTRACT

Interferometry sensors are frequently analyzed by applying the Fourier transform because the transformation separates all frequency components of its signal, making its study on a complex plane feasible. In this work, we study the relation between the optical path difference (OPD) and poles location theoretically and experimentally, using the Laplace transform and a pole-zero map. Theory and experiments are in concordance. For our study, only the cosine function was considered, which is filtered from the interference pattern. In experimental work, two unperturbed low-finesse Fabry-Pérot interferometers were used. First, a Fabry-Pérot interferometer that has a cavity length of ~1.6 mm was used. Its optical path difference was 2.33 mm and the poles were localized at points ±i12. rad/nm. Secondly, a Fabry-Pérot interferometer with a cavity length of ~5.2 mm was used, and its optical path difference was 7.59 mm and the poles were localized at points ±i40.4 rad/nm. Experimental results confirmed the theoretical analysis. Our proposal finds practical application for interferometer analysis, signal processing of optical fiber sensors, communication system analysis, and multiplexing systems based on interferometers.

4.
Sensors (Basel) ; 19(8)2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31013787

ABSTRACT

In civil engineering quasi-distributed optical fiber sensors are used for reinforced concrete monitoring, precast concrete monitoring, temperature monitoring, strain monitoring and temperature/strain monitoring. These quasi-distributed sensors necessarily apply some multiplexing technique. However, on many occasions, two or more multiplexing techniques are combined to increase the number of local sensors and then the cost of each sensing point is reduced. In this work, a signal analysis and a new signal demodulation algorithm are reported for a quasi-distributed optic fiber sensor system based on Frequency Division Multiplexing/Wavelength Division Multiplexing (FDM/WDM) and low-precision Fabry-Pérot interferometers. The mathematical analysis and the new algorithm optimize its design, its implementation, improve its functionality and reduce the cost per sensing point. The analysis was corroborated by simulating a quasi-distributed sensor in operation. Theoretical analysis and numerical simulation are in concordance. The optimization considers multiplexing techniques, signal demodulation, physical parameters, system noise, instrumentation, and detection technique. Based on our analysis and previous results reported, the optical sensing system can have more than 4000 local sensors and it has practical applications in civil engineering.

5.
Appl Opt ; 52(3): 495-504, 2013 Jan 20.
Article in English | MEDLINE | ID: mdl-23338199

ABSTRACT

We present a spectrometer and scanner based on optofluidic configurations. The main optical component of the spectrometer is a compound optical element consisting of an optofluidic lens and standard blazed diffraction grating. The spectrum size can be changed by filling the lens cavity with different liquids. The scanner comprises two hollow 45° angle prisms oriented at 90° to each other. By changing the liquid inside the prisms, two-dimensional light beam scanning can be performed.

SELECTION OF CITATIONS
SEARCH DETAIL
...