Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36433188

ABSTRACT

This paper presents the design of a safety system based on controlled electromagnetic field (CEMF) sensing technology to prevent accidents caused by power tools, especially related to handheld circular saws. The safety system creates an invisible protection bubble of electromagnetic field around the cutting edge. The system can provide early warning or critical warning when a person penetrates the safety bubble. This paper covers how the CEMF technology has been adapted to add value within this application where it needs to coexist with a difficult environment of metallic parts turning thousands of times per minute, strong vibrations, and different ranges of materials to be processed. The proposed contactless solution successfully detects the user, providing enough time for the power tool to totally stop its movement before touching and harming the user. This key property has required a careful optimization of the electromagnetic field generation, the design of a shield circuitry capable of operating properly in a large metal device, and the development of a multi-frame algorithm to address the stringent requirements related to the ability of the system to react to both very fast and very slow events. The feasibility of the system has been validated by a virtual testbench.


Subject(s)
Algorithms , Electromagnetic Fields , Humans
2.
Sensors (Basel) ; 18(11)2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30405080

ABSTRACT

This paper presents the design of a wireless flood sensor to detect the presence of water on home floors, providing early warning of water leaks. A wireless sensor network has been deployed to gather the measurements from the sensor nodes. A control central coordinates the network and processes the data. Users can remotely inquire for the presence of water, status of the batteries for a specific node, the type of liquid and information about its functionality and alarms, thanks to a proprietary software application. The alerts are also communicated to the user within the home through an audible siren. The designed device is optimized in terms of costs, ease of deployment and maintenance, thus making it widely acceptable to end users.

3.
Sensors (Basel) ; 18(3)2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29543765

ABSTRACT

This work presents the design, construction and testing of a new embedded sensor system for monitoring concrete curing. A specific mote has been implemented to withstand the aggressive environment without affecting the measured variables. The system also includes a real-time monitoring application operating from a remote computer placed in a central location. The testing was done in two phases: the first in the laboratory, to validate the functional requirements of the developed devices; and the second on civil works to evaluate the functional features of the devices, such as range, robustness and flexibility. The devices were successfully implemented resulting in a low cost, highly reliable, compact and non-destructive solution.

4.
Sensors (Basel) ; 17(3)2017 Feb 25.
Article in English | MEDLINE | ID: mdl-28245623

ABSTRACT

This paper presents a wireless fault detection system for industrial motors that combines vibration, motor current and temperature analysis, thus improving the detection of mechanical faults. The design also considers the time of detection and further possible actions, which are also important for the early detection of possible malfunctions, and thus for avoiding irreversible damage to the motor. The remote motor condition monitoring is implemented through a wireless sensor network (WSN) based on the IEEE 802.15.4 standard. The deployed network uses the beacon-enabled mode to synchronize several sensor nodes with the coordinator node, and the guaranteed time slot mechanism provides data monitoring with a predetermined latency. A graphic user interface offers remote access to motor conditions and real-time monitoring of several parameters. The developed wireless sensor node exhibits very low power consumption since it has been optimized both in terms of hardware and software. The result is a low cost, highly reliable and compact design, achieving a high degree of autonomy of more than two years with just one 3.3 V/2600 mAh battery. Laboratory and field tests confirm the feasibility of the wireless system.

SELECTION OF CITATIONS
SEARCH DETAIL
...