Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 253, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429383

ABSTRACT

Flatfish undergo a remarkable metamorphosis from symmetrical pelagic larvae to fully asymmetrical benthic juveniles. The most distinctive features of this transformation is the migration of one eye. The molecular role of thyroid hormone in the metamorphosis process in flatfishes is well established. However, the regulatory network that facilitates eye movement remains enigmatic. This paper presents a morphological investigation of the metamorphic process in turbot eyes, using advanced imaging techniques and a global view of gene expression. The study covers migrant and non-migrant eyes and aims to identify the genes that are active during ocular migration. Our transcriptomic analysis shows a significant up-regulation of immune-related genes. The analysis of eye-specific genes reveals distinct patterns during the metamorphic process. Myosin is highlighted in the non-migrant eye, while ependymin is highlighted in the migrant eye, possibly involved in optic nerve regeneration. Furthermore, a potential association between the alx3 gene and cranial restructuring has been identified. Additionally, it confirmed simultaneous adaptation to low light in both eyes, as described by changes in opsins expression during the metamorphic process. The study also revealed that ocular migration activates systems asynchronously in both eyes, providing insight into multifaceted reorganization processes during metamorphosis of flatfish.


Subject(s)
Flatfishes , Animals , Flatfishes/genetics , Metamorphosis, Biological/genetics , Eye , Thyroid Hormones/genetics , Gene Expression Profiling
2.
Food Res Int ; 170: 112989, 2023 08.
Article in English | MEDLINE | ID: mdl-37316020

ABSTRACT

Listeria monocytogenes has a range of strategies that allow it to persist as biofilms in food processing environments (FPE), making it a pathogen of concern to the food industry. The properties of these biofilms are highly variable among strains, and this significantly affects the risk of food contamination. The present study therefore aims to conduct a proof-of-concept study to cluster strains of L. monocytogenes by risk potential using principal component analysis, a multivariate approach. A set of 22 strains, isolated from food processing environments, were typed by serogrouping and pulsed-field gel electrophoresis, showing a relatively high diversity. They were characterized in terms of several biofilm properties that might pose a potential risk of food contamination. The properties studied were tolerance to benzalkonium chloride (BAC), the structural parameters of biofilms (biomass, surface area, maximum and average thickness, surface to biovolume ratio and roughness coefficient) measured by confocal laser scanning microscopy and (3) transfer of biofilm cells to smoked salmon. The PCA correlation circle revealed that the tolerance of biofilms to BAC was positively correlated with roughness, but negatively with biomass parameters. On the contrary, cell transfers were not related to three-dimensional structural parameters, which suggests the role of other variables yet unexplored. Additionally, hierarchical clustering grouped strains into three different clusters. One of them included the strains with high tolerance to BAC and roughness. Another one consisted of strains with enhanced transfer ability, whereas the third cluster contained those that stood out for the thickness of biofilms. The present study represents a novel and effective way to classify L. monocytogenes strains according to biofilm properties that condition the potential risk of reaching the consumer through food contamination. It would thus allow the selection of strains representative of different worst-case scenarios for future studies in support of QMRA and decision-making analysis.


Subject(s)
Listeria monocytogenes , Principal Component Analysis , Food Handling , Benzalkonium Compounds , Cluster Analysis , Risk Factors
3.
Sci Total Environ ; 818: 151688, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-34793797

ABSTRACT

Microplastics (MPs) are a major concern for marine ecosystems since they can be ingested by a wide range of marine species and transmitted through the food web. However, the potential hazardous impact of MPs in fishes, especially in early developing stages, is relatively unknown. In the present study, we assessed for the first time the ingestion and retention of MPs in early developing seahorses Hippocampus reidi. Seahorses are vulnerable species that may also be affected by both the direct ingestion of MPs through their preys and the accidental ingestion of MPs particles present in the water (i.e., seahorses ingest the prey by suction). We used copepods as both preys for seahorse juveniles and transfer vectors of MPs. Fed or starved copepods previously exposed to polyethylene microspheres (1-5 µm in diameter; 10 and 100 µg L-1) for 60 min at 26 °C showed fast evacuation of microspheres. The presence of MPs in copepods was significantly higher in previously fasted copepods compared to fed copepods. Seahorse juveniles fed on copepods pre-exposed to MPs, accumulated MPs in the gut proportionally to the concentration of MPs in copepods. A lower concentration of MPs in seahorses was observed at the longer exposure time (60 min), especially in fish fed with fasted copepods. However, after longer exposure, MPs were mainly accumulated close to the anus both individually or forming aggregates. Further studies should be performed to assess secondary effects of MPs ingestion in seahorses since they are considered a flagship species for marine conservation.


Subject(s)
Copepoda , Smegmamorpha , Water Pollutants, Chemical , Animals , Eating , Ecosystem , Microplastics , Plastics , Water Pollutants, Chemical/analysis
4.
Front Zool ; 18(1): 52, 2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34627317

ABSTRACT

INTRODUCTION: Most living marine organisms have a biphasic life cycle dependent on metamorphosis and settlement. These critical life-history events mean that a developmentally competent larva undergoes a range of coordinated morphological and physiological changes that are in synchrony with the ecological transition from a pelagic to a benthonic lifestyle. Therefore, transition from a pelagic to a benthonic habitat requires multiple adaptations, however, the underlying mechanisms regulating this process still remains unclear. Epigenetic regulation and specifically DNA methylation, has been suggested to be particularly important for organisms to adapt to new environments. Seahorses (Family Syngnathidae, Genus Hippocampus) are a fascinating group of fish, distinguished by their unique anatomical features, reproductive strategy and behavior. They are unique among vertebrate species due to their "male pregnancy", where males nourish developing embryos and larvae in a brood pouch until hatching and parturition occurs. After birth, free-swimming offspring are pelagic and subsequently they change into a demersal lifestyle. Therefore, to begin to address the question whether epigenetic processes could be involved in the transition from a planktonic to a benthonic lifestyle observed in seahorses, we studied global DNA methylation profiles in a tropical seahorse species (Hippocampus reidi) during postnatal development and settlement. RESULTS: We performed methylation-sensitive amplified polymorphism (MSAP) along with quantitative expression analysis for genes suggested to be involved in the methylation machinery at six age groups: 1, 5, 10, 20, 30 and 40 days after male's pouch release (DAR). Results revealed that the H. reidi genome has a significantly different DNA methylation profile during postnatal development and settlement on demersal habitats. Moreover, gene expression analysis showed up- and down-regulation of specific DNA methyltransferases (DNMTs) encoding genes. CONCLUSION: Our data show that the differences in the DNA methylation patterns seen among developmental stages and during the transition from a pelagic to a benthonic lifestyle suggest a potential for epigenetic regulation of gene expression (through DNA methylation) in this species. Therefore, epigenetic mechanisms could be necessary for seahorse settlement. Nevertheless, if these epigenetic mechanisms come from internal or if they are initiated via external environmental cues should be further investigated.

7.
PLoS One ; 9(12): e114837, 2014.
Article in English | MEDLINE | ID: mdl-25514808

ABSTRACT

The Shoc2 protein has been implicated in the positive regulation of the Ras-ERK pathway by increasing the functional binding interaction between Ras and Raf, leading to increased ERK activity. Here we found that Shoc2 overexpression induced sustained ERK phosphorylation, notably in the case of EGF stimulation, and Shoc2 knockdown inhibited ERK activation. We demonstrate that ectopic overexpression of human Shoc2 in PC12 cells significantly promotes neurite extension in the presence of EGF, a stimulus that induces proliferation rather than differentiation in these cells. Finally, Shoc2 depletion reduces both NGF-induced neurite outgrowth and ERK activation in PC12 cells. Our data indicate that Shoc2 is essential to modulate the Ras-ERK signaling outcome in cell differentiation processes involved in neurite outgrowth.


Subject(s)
Epidermal Growth Factor/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Neurites/metabolism , Animals , Cell Line, Tumor , Enzyme Activation/genetics , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/biosynthesis , MAP Kinase Signaling System , PC12 Cells , Phosphorylation , RNA Interference , RNA, Small Interfering , Rats , ras Proteins/genetics , ras Proteins/metabolism
8.
J Cell Sci ; 127(Pt 15): 3360-72, 2014 08 01.
Article in English | MEDLINE | ID: mdl-24928905

ABSTRACT

Vascular endothelial growth factor (VEGF) regulates key functions of the endothelium, such as angiogenesis or vessel repair in processes involving endothelial nitric oxide synthase (eNOS) activation. One of the effector kinases that become activated in endothelial cells upon VEGF treatment is protein kinase D (PKD). Here, we show that PKD phosphorylates eNOS, leading to its activation and a concomitant increase in NO synthesis. Using mass spectrometry, we show that the purified active kinase specifically phosphorylates recombinant eNOS on Ser1179. Treatment of endothelial cells with VEGF or phorbol 12,13-dibutyrate (PDBu) activates PKD and increases eNOS Ser1179 phosphorylation. In addition, pharmacological inhibition of PKD and gene silencing of both PKD1 and PKD2 abrogate VEGF signaling, resulting in a clear diminished migration of endothelial cells in a wound healing assay. Finally, inhibition of PKD in mice results in an almost complete disappearance of the VEGF-induced vasodilatation, as monitored through determination of the diameter of the carotid artery. Hence, our data indicate that PKD is a new regulatory kinase of eNOS in endothelial cells whose activity orchestrates mammalian vascular tone.


Subject(s)
Carotid Arteries/pathology , Epithelial Cells/physiology , Nitric Oxide Synthase Type III/metabolism , Protein Kinase C/metabolism , Vasodilation/drug effects , Angiogenesis Inducing Agents , Animals , COS Cells , Carbazoles/pharmacology , Carotid Arteries/drug effects , Cell Movement/drug effects , Cell Movement/genetics , Chlorocebus aethiops , HEK293 Cells , Humans , Mice , Mice, Inbred Strains , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/genetics , Phosphorylation , Protein Kinase C/administration & dosage , Protein Kinase C/genetics , RNA, Small Interfering/genetics , Serine/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Vascular Endothelial Growth Factor A/metabolism
9.
PLoS One ; 9(4): e95191, 2014.
Article in English | MEDLINE | ID: mdl-24740233

ABSTRACT

Neuronal Nitric Oxide Synthase (nNOS) is the biosynthetic enzyme responsible for nitric oxide (·NO) production in muscles and in the nervous system. This constitutive enzyme, unlike its endothelial and inducible counterparts, presents an N-terminal PDZ domain known to display a preference for PDZ-binding motifs bearing acidic residues at -2 position. In a previous work, we discovered that the C-terminal end of two members of protein kinase D family (PKD1 and PKD2) constitutes a PDZ-ligand. PKD1 has been shown to regulate multiple cellular processes and, when activated, becomes autophosphorylated at Ser 916, a residue located at -2 position of its PDZ-binding motif. Since nNOS and PKD are spatially enriched in postsynaptic densities and dendrites, the main objective of our study was to determine whether PKD1 activation could result in a direct interaction with nNOS through their respective PDZ-ligand and PDZ domain, and to analyze the functional consequences of this interaction. Herein we demonstrate that PKD1 associates with nNOS in neurons and in transfected cells, and that kinase activation enhances PKD1-nNOS co-immunoprecipitation and subcellular colocalization. However, transfection of mammalian cells with PKD1 mutants and yeast two hybrid assays showed that the association of these two enzymes does not depend on PKD1 PDZ-ligand but its pleckstrin homology domain. Furthermore, this domain was able to pull-down nNOS from brain extracts and bind to purified nNOS, indicating that it mediates a direct PKD1-nNOS interaction. In addition, using mass spectrometry we demonstrate that PKD1 specifically phosphorylates nNOS in the activatory residue Ser 1412, and that this phosphorylation increases nNOS activity and ·NO production in living cells. In conclusion, these novel findings reveal a crucial role of PKD1 in the regulation of nNOS activation and synthesis of ·NO, a mediator involved in physiological neuronal signaling or neurotoxicity under pathological conditions such as ischemic stroke or neurodegeneration.


Subject(s)
Cerebral Cortex/metabolism , Neurons/metabolism , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide/metabolism , Protein Kinase C/metabolism , Amino Acid Sequence , Animals , COS Cells , Cerebral Cortex/cytology , Chlorocebus aethiops , Embryo, Mammalian , Gene Expression Regulation, Developmental , HEK293 Cells , Humans , Mice , Molecular Sequence Data , Neurons/cytology , Nitric Oxide Synthase Type I/chemistry , Nitric Oxide Synthase Type I/genetics , PC12 Cells , Phosphorylation , Primary Cell Culture , Protein Binding , Protein Kinase C/chemistry , Protein Kinase C/genetics , Protein Structure, Tertiary , Rats , Rats, Wistar , Signal Transduction
10.
J Biotechnol ; 155(4): 412-20, 2011 Oct 10.
Article in English | MEDLINE | ID: mdl-21839786

ABSTRACT

The distribution of enzymes attached to porous solid supports is a major concern in multienzymatic bioreactors. Herein, as proof of the concept that protein localization on porous surfaces can be controlled by tuning the protein immobilization rate. We study the distribution of two poly-histidine-tagged fluorescent proteins (His-GFP and His-mCherryFP) immobilized on different 4% crosslinked agarose-type carriers by confocal laser scanning microscopy. In this context, immobilization rate is easily modulated by controlling the (i) nature of physico-chemical interaction between protein and surface (reactive groups on surface), (ii) by controlling the reactive group density and (iii) by adding competitors to the immobilization process. His-GFP is 350-fold more rapid immobilized on agarose surfaces activated with either glyoxyl groups or chelates than the same matrix activated with primary amine groups instead. A similar effect is seen with agarose matrixes activated with lower glyoxyl densities that immobilize His-GFP roughly 350-fold slower than the corresponding highly activated matrix. When His-GFP is immobilized on agarose activated with chelates groups in presence of imidazol which competes with the protein for the reactive groups on the support, the immobilization rate is again 400-fold slower than when the same protein was immobilized on the same support but with no imidazol during the immobilization process. In all cases, it was observed that rapid immobilizations (quantitative immobilization in less than 10min) located 100% of the loaded protein at the crown of the carrier beads, meaning that only the 10% of the bead radius was colonized by the protein. On the contrary, when immobilization is much slower, a homogeneous distribution is obtained, resulting in beads whose whole radius is occupied by the protein. Therefore, we set that the more rapid immobilization, the more heterogeneous distribution. All the knowledge gained in protein distribution by immobilization rate alteration of a single protein is applied to the co-immobilization of the two fluorescent proteins in order to develop four different co-immobilization patterns with an enormous applied potential to other multi-protein systems.


Subject(s)
Escherichia coli/chemistry , Histidine/chemistry , Immobilized Proteins/chemistry , Green Fluorescent Proteins/chemistry , Imidazoles/chemistry , Kinetics , Microspheres , Models, Theoretical , Porosity , Sepharose/chemistry
11.
Eur J Immunol ; 41(4): 1035-46, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21381019

ABSTRACT

Kinase D interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), is a protein that is mainly expressed in brain and neural cells where its function is only starting to be characterized. Here, we show that Kidins220/ARMS is also expressed in T lymphocytes where it is highly concentrated at the uropod of polarized T cells. In this cellular model, Kidins220/ARMS colocalizes with typical uropod T-cell molecules and coimmunoprecipitates with ICAM-3. Furthermore, Kidins220/ARMS associates with raft domains at the uropod and coimmunoprecipitates with caveolin-1, a molecule we show here to be also expressed in T cells. Importantly, induction of morphological polarization in primary T lymphocytes and Jurkat cells enhances Kidins220/ARMS colocalization with ICAM-3. Conversely, disruption of cell polarity provokes Kidins220/ARMS redistribution from the uropod to other cellular regions and drastically impairs its association with ICAM-3 in a protein kinase C-dependent manner. Finally, Kidins220/ARMS knockdown in human polarized T-cell lines promotes both basal and stromal cell-derived factor-1α-induced directed migration, identifying a novel function for this molecule. Altogether, our findings show that Kidins220/ARMS is a novel component of the uropod involved in the regulation of T-cell motility, an essential process for the immune response.


Subject(s)
Antigens, CD/immunology , Cell Adhesion Molecules/immunology , Cell Movement , Membrane Proteins/immunology , Nerve Tissue Proteins/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Animals , Caveolin 1/metabolism , Cell Polarity , Cells, Cultured , Gene Expression Regulation , Humans , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Protein Binding , Rats
12.
Glia ; 58(8): 984-95, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20222145

ABSTRACT

Protein kinase D (PKD) is a family of serine/threonine kinases that can be activated by many stimuli via protein kinase C in a variety of cells. This is the first report where PKD activation and localization is studied in glial cells. Herein, we demonstrate that P2Y(2) and P2X7 receptor stimulation of primary rat cerebellar astrocytes rapidly increases PKD1/2 phosphorylation and activity. P2Y(2) receptor response evokes a PKD1/2 activation that is dependent on a pertussis toxin-insensitive G protein, phospholipase C (PLC)-mediated generation of diacylglycerol, and protein kinase C. This mechanism is similar to the one described for other G-protein coupled receptors. In contrast, the way the ionotropic P2X7 receptor activates PKD1/2 is significantly different. Importantly, this response is not dependent on calcium entry, but depends on the activity of several phospholipases, including phosphoinositide-phospholipase C (PI-PLC), phosphatidylcholine-phospholipase C (PC-PLC) and also phospholipase D (PLD). Immunoblot and confocal microscopy analysis show that PKD1/2 activation by nucleotides is transient. The active kinase first moves to and concentrates in certain plasma membrane domains. Then, phosphorylated-PKD1/2 translocates to intracellular vesicles, where it remains active. All together, our results open the perspective of PKD1/2 being involved in many physiological functions where nucleotides play important roles not only in astrocytes but in other cell types bearing these receptors.


Subject(s)
Astrocytes/metabolism , Gene Expression Regulation, Enzymologic/physiology , Protein Kinase C/metabolism , Receptors, Purinergic P2/physiology , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Animals , Astrocytes/drug effects , Cerebellum/cytology , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Green Fluorescent Proteins/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Nucleotides/pharmacology , Phosphorylation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Pyridoxal Phosphate/analogs & derivatives , Pyridoxal Phosphate/pharmacology , Rats , Rats, Wistar , Receptors, Purinergic P2/deficiency , Receptors, Purinergic P2X7 , Receptors, Purinergic P2Y2 , Serine/metabolism , Transfection/methods
13.
J Biol Chem ; 285(2): 1343-57, 2010 Jan 08.
Article in English | MEDLINE | ID: mdl-19903810

ABSTRACT

In order for neurons to perform their function, they must establish a highly polarized morphology characterized, in most of the cases, by a single axon and multiple dendrites. Herein we find that the evolutionarily conserved protein Kidins220 (kinase D-interacting substrate of 220-kDa), also known as ARMS (ankyrin repeat-rich membrane spanning), a downstream effector of protein kinase D and neurotrophin and ephrin receptors, regulates the establishment of neuronal polarity and development of dendrites. Kidins220/ARMS gain and loss of function experiments render severe phenotypic changes in the processes extended by hippocampal neurons in culture. Although Kidins220/ARMS early overexpression hinders neuronal development, its down-regulation by RNA interference results in the appearance of multiple longer axon-like extensions as well as aberrant dendritic arbors. We also find that Kidins220/ARMS interacts with tubulin and microtubule-regulating molecules whose role in neuronal morphogenesis is well established (microtubule-associated proteins 1b, 1a, and 2 and two members of the stathmin family). Importantly, neurons where Kidins220/ARMS has been knocked down register changes in the phosphorylation activity of MAP1b and stathmins. Altogether, our results indicate that Kidins220/ARMS is a key modulator of the activity of microtubule-regulating proteins known to actively regulate neuronal morphogenesis and suggest a mechanism by which it contributes to control neuronal development.


Subject(s)
Cell Polarity/physiology , Hippocampus/metabolism , Membrane Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Neurons/metabolism , Phosphoproteins/metabolism , Tubulin/metabolism , Animals , Gene Knockdown Techniques , Hippocampus/cytology , Membrane Proteins/genetics , Microtubule-Associated Proteins/genetics , Neurons/cytology , PC12 Cells , Phosphoproteins/genetics , Protein Kinase C/genetics , Protein Kinase C/metabolism , Rats , Receptors, Nerve Growth Factor/genetics , Receptors, Nerve Growth Factor/metabolism , Stathmin/genetics , Stathmin/metabolism , Tubulin/genetics
14.
J Biol Chem ; 281(27): 18888-900, 2006 Jul 07.
Article in English | MEDLINE | ID: mdl-16651260

ABSTRACT

Protein kinase D (PKD) controls protein traffic from the trans-Golgi network (TGN) to the plasma membrane of epithelial cells in an isoform-specific manner. However, whether the different PKD isoforms could be selectively regulating the traffic of their specific substrates remains unexplored. We identified the C terminus of the different PKDs that constitutes a postsynaptic density-95/discs large/zonula occludens-1 (PDZ)-binding motif in PKD1 and PKD2, but not in PKD3, to be responsible for the differential control of kinase D-interacting substrate of 220-kDa (Kidins220) surface localization, a neural membrane protein identified as the first substrate of PKD1. A kinase-inactive mutant of PKD3 is only able to alter the localization of Kidins220 at the plasma membrane when its C terminus has been substituted by the PDZ-binding motif of PKD1 or PKD2. This isoform-specific regulation of Kidins220 transport might not be due to differences among kinase activity or substrate selectivity of the PKD isoenzymes but more to the adaptors bound to their unique C terminus. Furthermore, by mutating the autophosphorylation site Ser(916), located at the critical position -2 of the PDZ-binding domain within PKD1, or by phorbol ester stimulation, we demonstrate that the phosphorylation of this residue is crucial for Kidins220-regulated transport. We also discovered that Ser(916) trans-phosphorylation takes place among PKD1 molecules. Finally, we demonstrate that PKD1 association to intracellular membranes is critical to control Kidins220 traffic. Our findings reveal the molecular mechanism by which PKD localization and activity control the traffic of Kidins220, most likely by modulating the recruitment of PDZ proteins in an isoform-specific and phosphorylation-dependent manner.


Subject(s)
Membrane Proteins/metabolism , Phosphoproteins/metabolism , Protein Kinases/metabolism , Animals , Binding Sites , Cells, Cultured , Disks Large Homolog 4 Protein , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Mutation , Nerve Tissue Proteins/metabolism , Protein Binding , Protein Kinase C/genetics , Protein Kinase C/metabolism , Protein Kinase D2 , Protein Kinases/genetics , Protein Structure, Tertiary , Rats , Rats, Wistar , Substrate Specificity
15.
Mol Cell Neurosci ; 31(4): 692-701, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16458016

ABSTRACT

We report induction of TNF-alpha via the calcium/calcineurin/NFAT pathway in PC12 neural cells. In PC12, expression of TNF-alpha mRNA, protein and TNF-alpha gene promoter activity was induced by co-stimulation with phorbol ester and either calcium ionophore A23187 or the L-type Voltage Gated Calcium Channel agonist Bay K 8644. Pre-treatment with calcineurin inhibitors CsA or FK506 inhibited the dominant calcium-dependent component of this induction, limiting it to the level achieved with phorbol ester alone. Promoter activation by Bay was abolished by nifedipine, a specific inhibitor of L-type Voltage Gated Calcium Channels. Exogenous NFAT protein transactivated the TNF-alpha promoter, and the peptide VIVIT-a specific inhibitor of calcineurin/NFAT binding-blocked calcium-inducible transactivation of the TNF-alpha promoter. Given proposed functions of TNF-alpha in spatial learning, memory and the pathogenesis of neurodegenerative diseases, the data presented suggest an important role for calcineurin/NFAT signaling in these key neurological processes.


Subject(s)
Calcineurin/metabolism , Calcium/metabolism , NFATC Transcription Factors/metabolism , Neurons , Tumor Necrosis Factor-alpha/metabolism , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology , Animals , Calcimycin/pharmacology , Calcium Channel Agonists/pharmacology , Calcium Signaling/physiology , Cycloheximide/pharmacology , Cyclosporine/pharmacology , Enzyme Inhibitors/pharmacology , Gene Expression Regulation , Humans , Immunosuppressive Agents/pharmacology , Ionophores/pharmacology , Neurons/drug effects , Neurons/metabolism , Oligopeptides/metabolism , PC12 Cells , Protein Synthesis Inhibitors/pharmacology , Rats , Tacrolimus/pharmacology , Tetradecanoylphorbol Acetate/pharmacology , Transcription, Genetic , Tumor Necrosis Factor-alpha/genetics
16.
J Biol Chem ; 279(27): 28592-602, 2004 Jul 02.
Article in English | MEDLINE | ID: mdl-15096499

ABSTRACT

Kidins220 (kinase D-interacting substrate of 220 kDa) is a novel neurospecific protein recently cloned as the first substrate for the Ser/Thr kinase protein kinase D (PKD). Herein we report that Kidins220 is constitutively associated to lipid rafts in PC12 cells, rat primary cortical neurons, and brain synaptosomes. Immunocytochemistry and confocal microscopy together with sucrose gradient fractionation show co-localization of Kidins220 and lipid raft-associated proteins. In addition, cholesterol depletion of cell membranes with methyl-beta-cyclodextrin dramatically alters Kidins220 localization and detergent solubility. By studying the putative involvement of lipid rafts in PKD activation and signaling we have found that active PKD partitions in lipid raft fractions after sucrose gradient centrifugation and that green fluorescent protein-PKD translocates to lipid raft microdomains at the plasma membrane after phorbol ester treatment. Strikingly, lipid rafts disruption by methyl-beta-cyclodextrin delays green fluorescent protein-PKD translocation, as determined by live cell confocal microscopy, and activates PKD, increasing Kidins220 phosphorylation on Ser(919) by a mechanism involving PKCepsilon and the small soluble tyrosine kinase Src. Collectively, these results reveal the importance of lipid rafts on PKD activation, translocation, and downstream signaling to its substrate Kidins220.


Subject(s)
Membrane Microdomains/metabolism , Neurons/metabolism , Protein Kinase C/metabolism , beta-Cyclodextrins , Animals , Blotting, Western , Brain/metabolism , Cell Membrane/metabolism , Cells, Cultured , Cholesterol/metabolism , Cyclodextrins/metabolism , Enzyme Activation , Green Fluorescent Proteins , Image Processing, Computer-Assisted , Immunohistochemistry , Luminescent Proteins/metabolism , Membrane Proteins/metabolism , Mice , Microscopy, Confocal , Microscopy, Fluorescence , Nerve Tissue Proteins/metabolism , PC12 Cells , Phosphorylation , Precipitin Tests , Protein Transport , Rats , Rats, Wistar , Serine/chemistry , Synaptosomes/metabolism , Transfection
17.
Eur J Immunol ; 34(1): 108-18, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14971036

ABSTRACT

Kidins220, a protein predominantly expressed in neural tissues, is the first physiological substrate for protein kinase D (PKD). We show that Kidins220 is expressed in monocyte-derived and in peripheral blood immature dendritic cells (im DC). Immature DC (im DC) migrate onto extracellular matrices changing cyclically from a highly polarized morphology (monopolar (MP) stage) to a morphologically symmetrical shape (bipolar (BP) stage). Kidins220 was localized on membrane protrusions at the leading edge or on both poles in MP and BP cells, respectively. CD43, CD44, ICAM-3 and DC-SIGN, and signaling molecules PKD, Arp2/3 were found at the leading edge in MP or on both edges in BP cells, showing an intriguing parallelism between morphology and localization of molecular components on the poles of the motile DC. F-actin co-localized and it was necessary for Kidins220 localization on the membrane in MP and BP cells. Kidins220 was also found in a raft compartment. Disruption of rafts with methyl-beta-cyclodextrin induced rounding of the cells, inhibition of motility and lost of Kidins220 polarization. Our results describe for the first time the molecular components of the poles of motile im DC and indicate that a novel neuronal protein may be an important component among these molecules.


Subject(s)
Cell Differentiation/physiology , Dendritic Cells/metabolism , Membrane Microdomains/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Phosphoproteins/metabolism , Actins/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...