Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Article in English | MEDLINE | ID: mdl-38900843

ABSTRACT

PURPOSE OF REVIEW: The ocular surface is prone to inflammation due to exposure to environmental irritants and pathogens. Inflammasomes are intracellular, multiprotein complexes that communicate potentially dangerous signals to the immune system. The identification of inflammasomes in various inflammatory ocular surface conditions can aid in the development of therapeutics to treat these chronic inflammatory conditions. RECENT FINDINGS: Several inflammasomes have been associated with ocular surface disorders including dry eye disease, keratitis, and allergies. Mechanisms for activation of these inflammasomes with regards to specific disorders have been explored in models to aid in the development of targeted treatments. SUMMARY: Research efforts continue to characterize the types of inflammasomes and activators of these in inflammatory ocular surface conditions. Various therapies targeting specific inflammasome types or pyroptosis are being tested preclinically to assess effects on decreasing the associated chronic inflammation.

2.
Med ; 4(9): 583-590, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37689055

ABSTRACT

The translation of regenerative therapies to neuronal eye diseases requires a roadmap specific to the nature of the target diseases, patient population, methodologies for assessing outcome, and other factors. This commentary focuses on critical issues for translating regenerative eye therapies relevant to retinal neurons to human clinical trials.


Subject(s)
Eye Diseases , Retinal Neurons , Humans , Eye Diseases/therapy , Translations
3.
Exp Eye Res ; 225: 109248, 2022 12.
Article in English | MEDLINE | ID: mdl-36108770

ABSTRACT

Genomic studies in age-related macular degeneration (AMD) have identified genetic variants that account for the majority of AMD risk. An important next step is to understand the functional consequences and downstream effects of the identified AMD-associated genetic variants. Instrumental for this next step are 'omics' technologies, which enable high-throughput characterization and quantification of biological molecules, and subsequent integration of genomics with these omics datasets, a field referred to as systems genomics. Single cell sequencing studies of the retina and choroid demonstrated that the majority of candidate AMD genes identified through genomic studies are expressed in non-neuronal cells, such as the retinal pigment epithelium (RPE), glia, myeloid and choroidal cells, highlighting that many different retinal and choroidal cell types contribute to the pathogenesis of AMD. Expression quantitative trait locus (eQTL) studies in retinal tissue have identified putative causal genes by demonstrating a genetic overlap between gene regulation and AMD risk. Linking genetic data to complement measurements in the systemic circulation has aided in understanding the effect of AMD-associated genetic variants in the complement system, and supports that protein QTL (pQTL) studies in plasma or serum samples may aid in understanding the effect of genetic variants and pinpointing causal genes in AMD. A recent epigenomic study fine-mapped AMD causal variants by determing regulatory regions in RPE cells differentiated from induced pluripotent stem cells (iPSC-RPE). Another approach that is being employed to pinpoint causal AMD genes is to produce synthetic DNA assemblons representing risk and protective haplotypes, which are then delivered to cellular or animal model systems. Pinpointing causal genes and understanding disease mechanisms is crucial for the next step towards clinical translation. Clinical trials targeting proteins encoded by the AMD-associated genomic loci C3, CFB, CFI, CFH, and ARMS2/HTRA1 are currently ongoing, and a phase III clinical trial for C3 inhibition recently showed a modest reduction of lesion growth in geographic atrophy. The EYERISK consortium recently developed a genetic test for AMD that allows genotyping of common and rare variants in AMD-associated genes. Polygenic risk scores (PRS) were applied to quantify AMD genetic risk, and may aid in predicting AMD progression. In conclusion, genomic studies represent a turning point in our exploration of AMD. The results of those studies now serve as a driving force for several clinical trials. Expanding to omics and systems genomics will further decipher function and causality from the associations that have been reported, and will enable the development of therapies that will lessen the burden of AMD.


Subject(s)
Macular Degeneration , Humans , Macular Degeneration/genetics , Macular Degeneration/metabolism , Retinal Pigment Epithelium/metabolism , Complement System Proteins/metabolism , Choroid/metabolism , Proteins/genetics , Genomics , Polymorphism, Single Nucleotide , Complement Factor H/genetics , Complement Factor H/metabolism , High-Temperature Requirement A Serine Peptidase 1/genetics
5.
Genes (Basel) ; 13(4)2022 04 12.
Article in English | MEDLINE | ID: mdl-35456481

ABSTRACT

For disorders with X-linked inheritance, variants may be transmitted through multiple generations of carrier females before an affected male is ascertained. Pathogenic RS1 variants exclusively cause X-linked retinoschisis (XLRS). While RS1 is constrained to variation, recurrent variants are frequently observed in unrelated probands. Here, we investigate recurrent pathogenic variants to determine the relative burden of mutational hotspot and founder allele events to this phenomenon. A cohort RS1 variant analysis and standardized classification, including variant enrichment in the XLRS cohort and in RS1 functional domains, were performed on 332 unrelated XLRS probands. A total of 108 unique RS1 variants were identified. A subset of 19 recurrently observed RS1 variants were evaluated in 190 probands by a haplotype analysis, using microsatellite and single nucleotide polymorphisms. Fourteen variants had at least two probands with common variant-specific haplotypes over ~1.95 centimorgans (cM) flanking RS1. Overall, 99/190 of reportedly unrelated probands had 25 distinct shared haplotypes. Examination of this XLRS cohort for common RS1 haplotypes indicates that the founder effect plays a significant role in this disorder, including variants in mutational hotspots. This improves the accuracy of clinical variant classification and may be generalizable to other X-linked disorders.


Subject(s)
Genes, X-Linked , Retinoschisis , Eye Proteins/genetics , Female , Founder Effect , Humans , Male , Mutation , Retinoschisis/diagnosis , Retinoschisis/genetics , Retinoschisis/pathology
6.
PLoS Genet ; 18(3): e1010129, 2022 03.
Article in English | MEDLINE | ID: mdl-35353811

ABSTRACT

Over 1,500 variants in the ABCA4 locus cause phenotypes ranging from severe, early-onset retinal degeneration to very late-onset maculopathies. The resulting ABCA4/Stargardt disease is the most prevalent Mendelian eye disorder, although its underlying clinical heterogeneity, including penetrance of many alleles, are not well-understood. We hypothesized that a share of this complexity is explained by trans-modifiers, i.e., variants in unlinked loci, which are currently unknown. We sought to identify these by performing exome sequencing in a large cohort for a rare disease of 622 cases and compared variation in seven genes known to clinically phenocopy ABCA4 disease to cohorts of ethnically matched controls. We identified a significant enrichment of variants in 2 out of the 7 genes. Moderately rare, likely functional, variants, at the minor allele frequency (MAF) <0.005 and CADD>25, were enriched in ROM1, where 1.3% of 622 patients harbored a ROM1 variant compared to 0.3% of 10,865 controls (p = 2.41E04; OR 3.81 95% CI [1.77; 8.22]). More importantly, analysis of common variants (MAF>0.1) identified a frequent haplotype in PRPH2, tagged by the p.Asp338 variant with MAF = 0.21 in the matched general population that was significantly increased in the patient cohort, MAF 0.25, p = 0.0014. Significant differences were also observed between ABCA4 disease subgroups. In the late-onset subgroup, defined by the hypomorphic p.Asn1868Ile variant and including c.4253+43G>A, the allele frequency for the PRPH2 p.Asp338 variant was 0.15 vs 0.27 in the remaining cohort, p = 0.00057. Known functional data allowed suggesting a mechanism by which the PRPH2 haplotype influences the ABCA4 disease penetrance. These associations were replicated in an independent cohort of 408 patients. The association was highly statistically significant in the combined cohorts of 1,030 cases, p = 4.00E-05 for all patients and p = 0.00014 for the hypomorph subgroup, suggesting a substantial trans-modifying role in ABCA4 disease for both rare and common variants in two unlinked loci.


Subject(s)
ATP-Binding Cassette Transporters , Macular Degeneration , ATP-Binding Cassette Transporters/genetics , Eye Proteins/genetics , Gene Frequency , Humans , Macular Degeneration/genetics , Mutation , Pedigree , Phenotype , Stargardt Disease/genetics , Tetraspanins/genetics
8.
Transl Vis Sci Technol ; 10(10): 2, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34383880

ABSTRACT

Eight years since the launch of the National Eye Institute Audacious Goals Initiative for Regenerative Medicine, real progress has been made in the effort to restore vision by replacing retinal neurons. Although challenges remain, the infrastructure, tools, and preclinical models to support clinical studies in humans are being prepared. Building on the pioneering trials that are replacing the retinal pigment epithelium, it is expected that by the end of this decade first-in-human trials for the replacement of retinal neurons will be initiated.


Subject(s)
National Eye Institute (U.S.) , Regenerative Medicine , Humans , Goals , United States
9.
Transl Vis Sci Technol ; 9(12): 3, 2020 11.
Article in English | MEDLINE | ID: mdl-33200045

ABSTRACT

Dichotomies are double-edged: they can simplify and enlighten as well as exaggerate and entangle. Seeing the eye as anterior segment vs. posterior segment simplifies the formidable task of dissecting the function of the eye. Yet this view creates artificial divisions in a coherent whole. Clearly, vision requires the convergence of the light refractive function of the front of the eye with the light sensing function of the back of the eye. The National Eye Institute has long aimed to foster research across the visual pathway. Finding the right balance is a constant work in progress. A recently held scientific meeting which we co-organized with the United States Army Medical Research Institute of Chemical Defense, offered an opportunity to take stock of what the anterior segment in general, and the ocular surface in particular, bring to our understanding of biology and disease of the eye. Multiple dichotomies surfaced: acute vs. chronic disease; epithelial vs. endothelial damage; fibrotic vs. vascular pathology; inflammation vs. resolution response; chemical exposure vs. countermeasure; monotherapy vs. combination therapy; mechanistic vs. exploratory research; human vs. animal model. Merging some of these dichotomies is the goal of this paper.


Subject(s)
Anterior Eye Segment , Animals , Humans , United States
10.
Am J Med Genet C Semin Med Genet ; 184(3): 828-837, 2020 09.
Article in English | MEDLINE | ID: mdl-32893963

ABSTRACT

Genetic testing in a multisite clinical trial network for inherited eye conditions is described in this retrospective review of data collected through eyeGENE®, the National Ophthalmic Disease Genotyping and Phenotyping Network. Participants in eyeGENE were enrolled through a network of clinical providers throughout the United States and Canada. Blood samples and clinical data were collected to establish a phenotype:genotype database, biorepository, and patient registry. Data and samples are available for research use, and participants are provided results of clinical genetic testing. eyeGENE utilized a unique, distributed clinical trial design to enroll 6,403 participants from 5,385 families diagnosed with over 30 different inherited eye conditions. The most common diagnoses given for participants were retinitis pigmentosa (RP), Stargardt disease, and choroideremia. Pathogenic variants were most frequently reported in ABCA4 (37%), USH2A (7%), RPGR (6%), CHM (5%), and PRPH2 (3%). Among the 5,552 participants with genetic testing, at least one pathogenic or likely pathogenic variant was observed in 3,448 participants (62.1%), and variants of uncertain significance in 1,712 participants (30.8%). Ten genes represent 68% of all pathogenic and likely pathogenic variants in eyeGENE. Cross-referencing current gene therapy clinical trials, over a thousand participants may be eligible, based on pathogenic variants in genes targeted by those therapies. This article is the first summary of genetic testing from thousands of participants tested through eyeGENE, including reports from 5,552 individuals. eyeGENE provides a launching point for inherited eye research, connects researchers with potential future study participants, and provides a valuable resource to the vision community.


Subject(s)
Choroideremia/genetics , Eye Diseases, Hereditary/genetics , Retinitis Pigmentosa/genetics , Stargardt Disease/genetics , ATP-Binding Cassette Transporters/genetics , Adaptor Proteins, Signal Transducing/genetics , Choroideremia/diagnosis , Choroideremia/epidemiology , Choroideremia/therapy , Extracellular Matrix Proteins/genetics , Eye Diseases, Hereditary/diagnosis , Eye Diseases, Hereditary/epidemiology , Eye Diseases, Hereditary/therapy , Eye Proteins/genetics , Female , Genetic Testing/trends , Genetic Therapy/trends , Humans , Male , Peripherins/genetics , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/epidemiology , Retinitis Pigmentosa/therapy , Stargardt Disease/diagnosis , Stargardt Disease/epidemiology , Stargardt Disease/therapy
11.
Transl Vis Sci Technol ; 9(7): 49, 2020 06.
Article in English | MEDLINE | ID: mdl-32832254

ABSTRACT

Purpose: To review past and current National Eye Institute (NEI)-supported age-related macular degeneration (AMD) activities and initiatives and preview upcoming coordinated efforts for studying AMD. Methods: We conducted and summarized a portfolio analysis and literature review of NEI intramural and extramural AMD activities. Results: The NEI supports a broad range of AMD research, both by individual independent investigators as well as through networks and consortia. The International AMD Genomics Consortium, Age-Related Eye Disease Study, Age-Related Eye Disease Study 2 (AREDS2), and Comparison of AMD Treatments Trial legacy work probed the complex genetics, clinical presentation, and standards of patient care, respectively. The NEI AMD Pathobiology Working Group identified gaps and opportunities for future research efforts. The AMD Ryan Initiative Study and clinical trials testing the efficacies of minocycline to modulate retinal microglia activity and induced pluripotent stem cells-derived retinal pigmented epithelium (RPE) patch implants to rescue photoreceptor cell death are among the future directions for NEI-supported AMD research. Finally, NEI commissioned the creation of AREDS2 participant-derived induced pluripotent stem cell (iPSC) lines linked to their associated genomic and phenotypic datasets. These datasets will also be linked to the data obtained using their associated iPSC-derived cells (RPE, retina, choroid) and made publicly available. Conclusions: Investments by NEI for AMD research will continue to provide invaluable resources to investigators committed to addressing this complex blinding disease and other retinal degenerative diseases. Translational Relevance: NEI now stands poised to expand the resources available to clinical investigators to uncover disease mechanisms and move experimental therapies into clinical trials.


Subject(s)
Induced Pluripotent Stem Cells , Macular Degeneration , Retinal Degeneration , Humans , Macular Degeneration/genetics , National Eye Institute (U.S.) , Retina , United States/epidemiology
12.
Hum Mutat ; 41(9): 1528-1539, 2020 09.
Article in English | MEDLINE | ID: mdl-32531846

ABSTRACT

Molecular variant interpretation lacks disease gene-specific cohorts for determining variant enrichment in disease versus healthy populations. To address the molecular etiology of retinal degeneration, specifically the PRPH2-related retinopathies, we reviewed genotype and phenotype information obtained from 187 eyeGENE® participants from 161 families. Clinical details were provided by referring clinicians participating in the eyeGENE® Network. The cohort was sequenced for variants in PRPH2. Variant complementary DNA clusters and cohort frequency were compared to variants in public databases to help us to determine pathogenicity by current American College of Medical Genetics and Genomics/Association for Molecular Pathology interpretation criteria. The most frequent variant was c.828+3A>T, which affected 28 families (17.4%), and 25 of 79 (31.64%) variants were novel. The majority of missense variants clustered in the D2 intracellular loop of the peripherin-2 protein, constituting a hotspot. Disease enrichment was noted for 23 (29.1%) of the variants. Hotspot and disease-enrichment evidence modified variant classification for 16.5% of variants. The missense allele p.Arg172Trp was associated with a younger age of onset. To the best of our knowledge, this is the largest patient cohort review of PRPH2-related retinopathy. Large disease gene-specific cohorts permit gene modeling for hotspot and disease-enrichment analysis, providing novel variant classification evidence, including for novel missense variants.


Subject(s)
Genetic Association Studies , Peripherins/genetics , Retinal Diseases/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mutation, Missense , Pedigree , Registries , Young Adult
13.
Genes (Basel) ; 10(12)2019 12 11.
Article in English | MEDLINE | ID: mdl-31835688

ABSTRACT

Retinoblastoma (RB) is an inherited retinal disorder (IRD) caused by the mutation in the RB1 gene or, rarely, by alterations in the MYCN gene. In recent years, new treatment advances have increased ocular and visual preservation in the developed world. The management of RB has improved significantly in recent decades, from the use of external beam radiation to recently, more localized treatments. Determining the underlying genetic cause of RB is critical for timely management decisions. The advent of next-generation sequencing technologies have assisted in understanding the molecular pathology of RB. Liquid biopsy of the aqueous humor has also had significant potential implications for tumor management. Currently, patients' genotypic information, along with RB phenotypic presentation, are considered carefully when making treatment decisions aimed at globe preservation. Advances in molecular testing that improve our understanding of the molecular pathology of RB, together with multiple directed treatment options, are critical for developing precision medicine strategies to treat this disease.


Subject(s)
Retinoblastoma/genetics , Retinoblastoma/pathology , Retinoblastoma/therapy , DNA Mutational Analysis/methods , Genes, Retinoblastoma/genetics , Genotype , Germ-Line Mutation/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation/genetics , Phenotype , Retina/pathology , Retinal Neoplasms/genetics , Retinoblastoma Protein/genetics
14.
Clin Pharmacol Ther ; 103(3): 390-394, 2018 03.
Article in English | MEDLINE | ID: mdl-29105735

ABSTRACT

Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) is one of the most devastating of adverse drug reactions (ADRs) and was, until recently, essentially unpredictable. With the discovery of several risk alleles for drug-induced SJS/TEN and the demonstration of effectiveness of screening in reducing incidence, the stage is set for implementation of preventive strategies in populations at risk. Yet much remains to be learned about this potentially fatal complication of commonly used drugs.


Subject(s)
Genetic Predisposition to Disease/genetics , Genetic Testing , Stevens-Johnson Syndrome/genetics , Genetic Predisposition to Disease/prevention & control , Humans , Incidence , Necrosis , Predictive Value of Tests , Stevens-Johnson Syndrome/epidemiology , Stevens-Johnson Syndrome/prevention & control
15.
J Immunol ; 198(2): 645-656, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27956527

ABSTRACT

Molecules that are necessary for ocular hypersensitivity reactions include the receptors CCR1 and CCR3; CCL7 is a ligand for these receptors. Therefore, we explored the role of CCL7 in mast cell activity and motility in vitro and investigated the requirement for CCL7 in a murine model of IgE-mediated allergic conjunctivitis. For mast cells treated with IgE and Ag, the presence of CCL7 synergistically enhanced degranulation and calcium influx. CCL7 also induced chemotaxis in mast cells. CCL7-deficient bone marrow-derived mast cells showed decreased degranulation following IgE and Ag treatment compared with wild-type bone marrow-derived mast cells, but there was no difference in degranulation when cells were activated via an IgE-independent pathway. In vivo, CCL7 was upregulated in conjunctival tissue during an OVA-induced allergic response. Notably, the early-phase clinical symptoms in the conjunctiva after OVA challenge were significantly higher in OVA-sensitized wild-type mice than in control challenged wild-type mice; the increase was suppressed in CCL7-deficient mice. In the OVA-induced allergic response, the numbers of conjunctival mast cells were lower in CCL7-deficient mice than in wild-type mice. Our results demonstrate that CCL7 is required for maximal OVA-induced ocular anaphylaxis, mast cell recruitment in vivo, and maximal FcεRI-mediated mast cell activation in vitro. A better understanding of the role of CCL7 in mediating ocular hypersensitivity reactions will provide insights into mast cell function and novel treatments for allergic ocular diseases.


Subject(s)
Chemokine CCL7/immunology , Conjunctivitis, Allergic/immunology , Mast Cells/immunology , Animals , Blotting, Western , Cell Degranulation/immunology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction
16.
Biopreserv Biobank ; 14(2): 149-55, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26891080

ABSTRACT

Quality assurance and quality control (QA/QC) procedures are vital to good biorepository management. The National Eye Institute (NEI) core CLIA-certified laboratory of the eyeGENE(®) Network receives blood from individuals with inherited eye conditions and isolates DNA for clinical genetic diagnostic testing and research. Clinical genetic test results are returned to the affected individuals, making it imperative that sample integrity is preserved throughout laboratory processing. A clinically validated, short tandem repeat (STR)-based approach, termed Sample Confirmation Testing (SCT), was developed to ensure that no significant laboratory errors occurred during processing. SCT uses modified protocols from commercial kits to create and compare STR profiles for each participant's original blood and derived DNA. This QA/QC procedure has been performed on 47% of the more than 6000 participants in the eyeGENE Biorepository and has identified significant laboratory errors in 0.4% of samples tested. SCT improves the quality of the data returned to affected individuals and the data distributed to researchers using eyeGENE samples by ensuring the integrity of the samples and aiding in curation of the biorepository. This approach serves as a model for other repositories to improve sample quality and management procedures.


Subject(s)
Biological Specimen Banks , Eye Diseases/genetics , Eye/metabolism , Microsatellite Repeats , Quality Control , Humans
17.
Perm J ; 19(4): 18-28, 2015.
Article in English | MEDLINE | ID: mdl-26222093

ABSTRACT

CONTEXT: Postoperative management of pain after total joint arthroplasty remains a challenge despite advancements in analgesics. Evidence shows that complementary modalities with mind-body and tactile-based approaches are valid and effective adjuncts to reduce pain and anxiety postoperatively. OBJECTIVE: To investigate the effectiveness of the "M" Technique (M), a registered method of structured touch using a set sequence and number of strokes, and a consistent level of pressure on hands and feet, compared with guided imagery and usual care, for the reduction of pain and anxiety in patients undergoing elective total knee or hip replacement surgery. METHODS: Randomized controlled trial: M-TIJRP (MiTechnique and guided Imagery in Joint Replacement Patients [Mighty Junior P]). At a community hospital, 225 male and female patients, aged 38 to 90 years, undergoing elective total hip or knee replacement were randomly assigned to 1 of 3 groups (75 patients in each): M, guided imagery, or usual care. They were blinded to their assignment until the intervention. MAIN OUTCOME MEASURES: Reduction of pain and anxiety postoperatively. Secondary outcomes measured use of pain medication and patient satisfaction. RESULTS: This study yielded positive findings for the management of pain and anxiety in patients undergoing elective joint replacement using M and guided imagery for 18 to 20 minutes compared with usual care. M showed the largest predicted decreases in both pain and anxiety between groups. There was no significant difference in narcotic pain medication use between groups. Patient satisfaction survey ratings were highest for M, followed by guided imagery. CONCLUSION: The benefit of M may be because of the specifically structured sequence of touch by competent caring, trained providers.


Subject(s)
Anxiety/therapy , Arthroplasty, Replacement, Hip/methods , Arthroplasty, Replacement, Knee/methods , Imagery, Psychotherapy/methods , Pain, Postoperative/therapy , Touch , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Pain Measurement , Patient Satisfaction
18.
Ophthalmic Surg Lasers Imaging Retina ; 46(3): 362-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25856824

ABSTRACT

BACKGROUND AND OBJECTIVE: To characterize the cellular, immunological, and inflammatory response to retinal photocoagulation of intense rupture laser lesions as a model of retinal degenerative diseases. MATERIALS AND METHODS: Seven C57BL/6 mice were irradiated using a 532-nm laser to induce 10 retinal burns per eye that ruptured Bruch's membrane. Blood was drawn from the saphenous vein before and 2 months after laser treatment. The serum was run on antigen microarrays with 85 molecular markers associated with retinal degenerative diseases. RESULTS: Rupture laser resulted in dramatic changes in the immunoglobulin reactivity of most inflammatory markers 2 months after laser injury. Approximately two-thirds increased expression and one-third decreased expression. Notable markers that were increased included complement C3, CRP, PKM2, and aldolase. CONCLUSION: Rupture laser injury causes a change in the serum inflammatory markers after 2 months similar to macular degeneration, diabetic retinopathy, and cancer-associated retinopathy. This animal model could be used as a biomarker for disease stage and activity in retinal degenerations.


Subject(s)
Biomarkers/blood , Bruch Membrane/injuries , Disease Models, Animal , Laser Coagulation/adverse effects , Retinal Degeneration/blood , Animals , C-Reactive Protein/metabolism , Complement C3/metabolism , Fructose-Bisphosphate Aldolase/blood , Immunoglobulin G/blood , Inflammation , Mice , Mice, Inbred C57BL , Pyruvate Kinase/blood , Retinal Degeneration/etiology , Retinal Degeneration/pathology , Rupture , Saphenous Vein
19.
Invest Ophthalmol Vis Sci ; 55(10): 6301-8, 2014 Sep 09.
Article in English | MEDLINE | ID: mdl-25205868

ABSTRACT

PURPOSE: Ciliary neurotrophic factor (CNTF) protects rod photoreceptors from retinal degenerative disease in multiple nonhuman models. Thus far, CNTF has failed to demonstrate rod protection in trials for human retinitis pigmentosa. Recently, CNTF was found to improve cone photoreceptor function in a canine CNGB3 achromatopsia model. This study explores whether this finding translates to humans with CNGB3 achromatopsia. METHODS: A five-subject, open-label Phase I/II study was initiated by implanting intraocular microcapsules releasing CNTF (nominally 20 ng/d) into one eye each of CNGB3 achromat participants. Fellow eyes served as untreated controls. Subjects were followed for 1 year. RESULTS: Pupil constriction in treated eyes gave evidence of intraocular CNTF release. Additionally, scotopic ERG responses were reduced, and dark-adapted psychophysical absolute thresholds were increased, attributable to diminished rod or rod pathway activity. Optical coherence tomography revealed that the cone-rich fovea underwent structural changes as the foveal hyporeflective zone (HRZ) became diminished in CNTF-treated eyes. No objectively measurable enhancement of cone function was found by assessments of visual acuity, mesopic increment sensitivity threshold, or the photopic ERG. Careful measurements of color hue discrimination showed no change. Nonetheless, subjects reported beneficial changes of visual function in the treated eyes, including reduced light sensitivity and aversion to bright light, which may trace to decreased effective ambient light from the pupillary constriction; further they noted slowed adaptation to darkness, consistent with CNTF action on rod photoreceptors. CONCLUSIONS: Ciliary neurotrophic factor did not measurably enhance cone function, which reveals a species difference between human and canine CNGB3 cones in response to CNTF. (ClinicalTrials.gov number, NCT01648452.).


Subject(s)
Ciliary Neurotrophic Factor/administration & dosage , Color Vision Defects/drug therapy , Cyclic Nucleotide-Gated Cation Channels/metabolism , Retinal Rod Photoreceptor Cells/physiology , Adult , Capsules , Color Vision Defects/metabolism , Color Vision Defects/physiopathology , Dark Adaptation , Drug Implants , Electroretinography , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prospective Studies , Retinal Rod Photoreceptor Cells/drug effects , Time Factors , Tomography, Optical Coherence , Young Adult
20.
Invest Ophthalmol Vis Sci ; 55(9): 5510-21, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-25082885

ABSTRACT

PURPOSE: To analyze the genetic test results of probands referred to eyeGENE with a diagnosis of hereditary maculopathy. METHODS: Patients with Best macular dystrophy (BMD), Doyne honeycomb retinal dystrophy (DHRD), Sorsby fundus dystrophy (SFD), or late-onset retinal degeneration (LORD) were screened for mutations in BEST1, EFEMP1, TIMP3, and CTRP5, respectively. Patients with pattern dystrophy (PD) were screened for mutations in PRPH2, BEST1, ELOVL4, CTRP5, and ABCA4; patients with cone-rod dystrophy (CRD) were screened for mutations in CRX, ABCA4, PRPH2, ELOVL4, and the c.2513G>A p.Arg838His variant in GUCY2D. Mutation analysis was performed by dideoxy sequencing. Impact of novel variants was evaluated using the computational tool PolyPhen. RESULTS: Among the 213 unrelated patients, 38 had BMD, 26 DHRD, 74 PD, 8 SFD, 6 LORD, and 54 CRD; six had both PD and BMD, and one had no specific clinical diagnosis. BEST1 variants were identified in 25 BMD patients, five with novel variants of unknown significance (VUS). Among the five patients with VUS, one was diagnosed with both BMD and PD. A novel EFEMP1 variant was identified in one DHRD patient. TIMP3 novel variants were found in two SFD patients, PRPH2 variants in 14 PD patients, ABCA4 variants in four PD patients, and p.Arg838His GUCY2D mutation in six patients diagnosed with dominant CRD; one patient additionally had a CRX VUS. ABCA4 mutations were identified in 15 patients with recessive CRD. CONCLUSIONS: Of the 213 samples, 55 patients (26%) had known causative mutations, and 13 (6%) patients had a VUS that was possibly pathogenic. Overall, selective screening for mutations in BEST1, PRPH2, and ABCA4 would likely yield the highest success rate in identifying the genetic basis for macular dystrophy phenotypes. Because of the overlap in phenotypes between BMD and PD, it would be beneficial to screen genes associated with both diseases.


Subject(s)
Eye Diseases, Hereditary/genetics , Genetic Testing/methods , Molecular Diagnostic Techniques , Mutation , Retinal Dystrophies/genetics , Vision Disorders/etiology , Adult , Aged , Aged, 80 and over , Female , Genetic Association Studies , Genetic Research , Genetic Variation , Humans , Male , Middle Aged , Phenotype , Visual Fields
SELECTION OF CITATIONS
SEARCH DETAIL
...