Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 930: 172660, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38649037

ABSTRACT

Hexachlorocyclohexanes (HCH) isomers and their transformation products, such as chlorobenzenes (ClB), generate severe and persistent environmental problems at many sites worldwide. The Wetland technology employing oxidation-reduction, biosorption, biodegradation and phytoremediation methods can sufficiently treat HCH-contaminated water. The treatment process is inherently natural and requires no supplementary chemicals or energy. The prototype with a capacity of 3 L/s was installed at Hajek quarry spoil heap (CZ), to optimize the technology on a full scale. The system is fed by drainage water with an average concentration of HCH 129 µg/L, ClB 640 µg/L and chlorophenols (ClPh) of 16 µg/L. The system was tested in two years of operation, regularly monitored for HCH, ClB and ClPh, and maintained to improve its efficiency. The assessment was not only for environmental effects but also for socio and economic indicators. During the operation, the removal efficiency of HCH ranged from 53.5 % to 96.9 % (83.9 % on average) depending on the flow rate. Removal efficiency was not uniform for individual HCH isomers but exhibited the trend: α = Î³ = Î´ > ß = Îµ. The improved water quality was reflected in a biodiversity increase expressed by a number of phytobenthos (diatoms) species, a common biomarker of aquatic environment quality. The Wetland outranked the conventional WWTP in 10 out of the 15 general categories, and it is the most relevant scenario from the socio, environmental, and economic aspects.


Subject(s)
Hexachlorocyclohexane , Water Pollutants, Chemical , Wetlands , Water Pollutants, Chemical/analysis , Hexachlorocyclohexane/analysis , Waste Disposal, Fluid/methods , Biodegradation, Environmental , Water Purification/methods
2.
Sci Total Environ ; 921: 171141, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38387594

ABSTRACT

Hexachlorocyclohexanes (HCH) belong to the banned pesticides with short-time production and use during the last century. However, the consequences of this short period are still present as persistent environmental contamination. This study represents the large lab-scale experiment focused on the HCH accumulation and metabolism in selected wetland plants (Juncus effuses, Typha latifolia, Phragmites australis) and trees (Alnus glutinosa) after the exposure to the technical mix of HCH isomers (t-HCH) or δ-HCH at three different concentration. During the three-month exposure, morphological (biomass, height, relative chlorophyll content) and physiological (photosynthetic measurements - photosynthetic rate, stomatal conductance, transpiration and dark transpiration) parameters were measured to assess the HCH effect on plant's growth. The results showed that all selected plant species supported HCH removal from the soil. The total removal efficiency was lower for the t-HCH than for δ-HCH exposure, and the best results were provided by Alnus glutinosa tree. Also, no isomer preference was observed in plants exposed to t-HCH. Most HCH remained accumulated in the root biomass, and mainly α-HCH and δ-HCH were transported to the above-ground parts due to their physicochemical properties. Simultaneously, HCH uptake and metabolization to chlorobenzenes (CB) and chlorophenols (CP) occur. Non-targeted analysis showed that CP could be conjugated to glucose and malonyl in plant tissue, and secondary plant metabolism is affected positively and negatively after exposure to t-HCH depending on plant species and chemical concentration. Luteolin, quercetin and quercetin-3-O-glucoside found common to all species showed quantitative changes due to HCH. Nevertheless, most morphological and physiological parameters were adversely affected without statistical significance. This large-scale study provides information on the fate of HCH in the soil-plant system, the suitability of selected plants and their adaptation to chemical stress for use in the phytoremediation process.


Subject(s)
Hexachlorocyclohexane , Wetlands , Hexachlorocyclohexane/analysis , Bioaccumulation , Biodegradation, Environmental , Plants/metabolism , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...