Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
J Clin Exp Dent ; 16(3): e333-e342, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38600927

ABSTRACT

Background: Dual-cure resin-based luting materials are increasingly favored in clinical applications due to their capacity to establish a strong bond with natural tooth structure and restorations. This study aimed to examine certain physical and handling characteristics of newly developed experimental dual-cure luting resins reinforced with short fibers (SFRCs) and compare them with commercially available dual-cure luting resins. Material and Methods: Seven dual-cure luting materials were tested (Relyx Ultimate, Duo-Link, eCEMENT, Variolink Esthetic, G-CEM LinkForce, experimental SFRC1, experimental SFRC2). Fourier transform infrared spectroscopy (FTIR) was utilized to determine the degree of monomer conversion (DC%) in the self and light-curing protocol. A rotating disk rheometer measured viscosity at room temperature (22°C) and simulated mouth temperature (35°C). Fracture toughness, flexural strength, and flexural modulus were evaluated using a 3-point bending test. Each luting resin was subjected to the examination of its surface microstructure using scanning electron microscopy (SEM). Analysis of variance (ANOVA) at a significance level of (p = 0.05) was conducted to analyze data. Results: It was revealed that DC% of the tested dual-cure resins was significantly (p< 0.05) affected by the curing mode, the dual-cure SFRC2 having the highest and Relyx having the lowest DC (64%, and 41% respectively). The viscosity of all tested materials decreased with increasing temperature. SFRC2 demonstrated the highest fracture toughness (2.3 MPa m1/2), while Relyx Ultimate, Duo-Link, and eCEMENT exhibited the lowest values (≈ 1 MPa m1/2)(p< 0.05). Both SFRCs and G-CEM link-force exhibited the highest flexural strength values, and SFRCs resulted in the highest flexural modulus values (p<0.05). Conclusions: The experimental fiber-reinforced dual-cure luting resins exhibited superior DC%, fracture toughness, and flexural properties, yet, SFRC2 showed the highest viscosity at elevated temperature. These results highlight the capability of short fiber reinforcement to enhance the mechanical properties of dual-cured resin-based luting materials without compromising handling characteristics. Key words:Dual-cure luting resin; short fibers; degree of conversion; viscosity; fracture toughness; flexural properties.

2.
Polymers (Basel) ; 16(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38475291

ABSTRACT

The aim of this study was to compare the mechanical properties and ion release from a commercially available resin-modified glass ionomer cement to a formulation reinforced by the addition of short glass fibres at various percentages. Methods: Three experimental groups were prepared by adding a mass ratio of 10%, 15% and 20% of short glass fibres to the powder portion of the cement from a capsule (GC Fuji II LC), while the control group contained no fibres. Microhardness (n = 12), fracture toughness, and flexural, compressive and diametral tensile strength (n = 8) were evaluated. To study ion release, readings were obtained utilising fluoro-selective and calcium-selective electrodes after 24 h, 7 days and 30 days (n = 12). The spatial distribution of fibres within the material was evaluated through scanning electron microscopy. The data were analysed using one-way ANOVA with a Bonferroni adjustment. Results: The findings suggest that elevating fibre weight ratios to 20 wt% results in improved mechanical properties (p < 0.05) in microhardness, flexural strength, diametral tensile strength and fracture toughness. In terms of ion release, a statistically significant difference (p < 0.001) was observed between the groups at the conclusion of 24 h and 7 days, when the fluoride release was much higher in the control group. However, after 30 days, no significant distinction among the groups was identified (p > 0.05). Regarding calcium release, no statistically significant differences were observed among the groups at any of the evaluated time points (p > 0.05). SEM showed the fibres were homogeneously incorporated into the cement in all experimental groups. Conclusions: Resin-modified glass ionomer enhanced with short glass fibres at a weight loading of 20% showcased the most favourable mechanical properties while concurrently maintaining the ability to release fluoride and calcium after a 30-day period.

3.
Clin Oral Investig ; 27(5): 2419-2426, 2023 May.
Article in English | MEDLINE | ID: mdl-36746817

ABSTRACT

OBJECTIVES: The aim was to investigate the two-body wear at the marginal area between direct filling composites and substrate of CAD/CAM composites or enamel. MATERIALS AND METHODS: Flat specimens were prepared from CAD/CAM composites (CERASMART 270 and SFRC CAD) and bovine enamel. A box-shaped cavity cut into CAD/CAM composites and enamel surfaces was made. The prepared cavity in CAD/CAM composites was treated with a primer, while in enamel, the cavity was treated with an adhesive. Three conventional composites (Universal Injectable, G-aenial A'Chord, and Filtek Bulk Fill) and one short fiber composite (everX Flow) were placed and cured in the prepared cavities. A two-body wear test was conducted with 15,000 chewing cycles using a dual-axis chewing simulator. The specimens (n = 5/per group) were positioned to produce wear (load = 20 N) across the marginal area between filling composites and substrates. The wear depth was analyzed using a 3D optical profilometer. SEM was used to evaluate the wear behavior and margins between the filling and substrate materials. RESULTS: All composites used displayed different wear behavior (20-39 µm) (p < 0.05). The highest wear values were recorded for A'Chord and Filtek, while the lowest values were for Injectable and CERASMART 270. The data analysis showed that the wear behavior of substrate materials depends on the filling materials used at margins (p < 0.05). The marginal breakdown was seen only between bovine enamel and filling composites. CONCLUSIONS: The use of the two-body wear simulation method revealed important information about the behavior of the filling composites at the marginal area with CAD/CAM composites or bovine enamel substrates. CLINICAL RELEVANCE: The marginal breakdown related to the material combination at the bonding region.


Subject(s)
Composite Resins , Dental Materials , Animals , Cattle , Materials Testing , Computer-Aided Design , Dental Enamel , Surface Properties
4.
Int J Prosthodont ; 36(5): 649, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-33625389

ABSTRACT

PURPOSE: To evaluate the fracture-behavior of monolithic crowns made of lithium disilicate (IPS e.max CAD, Ivoclar Vivadent; IniBal LiSi Block, GC Dental) and zirconia-reinforced lithium silicate (Celtra Duo, DeguDent; VITA Zahnfabrik) materials before and after cyclic fatigue aging. MATERIALS AND METHODS: Four groups (n = 22/group) of CAD/CAM fabricated upper incisor crowns were produced. All crowns were luted on metal dies with an adhesive dual-cure resin cement (G-CEM LinkForce, GC Dental). Half of the crowns in each group (n = 11) were statically loaded until fracture, without aging. The remaining crowns were subjected to cyclic fatigue aging for 120,000 cycles (Fmax = 220 N) and then loaded statically until fracture. The fractured models were then visually examined. Scanning electron microsopy (SEM) and energy-dispersive spectroscopy (EDS) were used to evaluate the microstructure of CAD/CAM ceramic materials. The data were statistically analyzed with two-way ANOVA followed by the Tukey HSD test (α = .05). RESULTS: Before cyclic aging, there was no statistically significant difference in load-bearing capacity among the four groups (P = .371). After cyclic aging, load-bearing capacity significantly decreased for all groups (P = .000). While the e.max CAD blocks had significantly higher load-bearing capacity (1061 ± 94 N) than both monolithic ceramic crowns (load-bearing capacities of the groups) (P < .05), no significant difference was obtained with the Initial LiSi Block group (920 ± 140 N) (P = .061). CONCLUSIONS: The mechanical performance of monolithic ceramic crowns fabricated from lithium disilicate was befer than zirconia-reinforced lithium silicate after cyclic fatigue aging. Int J Prosthodont 2023;36:e29-e37.


Subject(s)
Dental Porcelain , Lithium , Dental Porcelain/chemistry , Ceramics/chemistry , Crowns , Silicates , Computer-Aided Design , Materials Testing , Dental Stress Analysis , Dental Restoration Failure
5.
Polymers (Basel) ; 13(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34771239

ABSTRACT

To reinforce extensively prepared cavities, different types of fiber reinforcement are utilized. Polyethylene and glass fibers are the most commonly used fibers in that purpose; each type has its own advantages over the other type. Therefore, the aim of this study is to review the literature to evaluate and compare the influence of different fiber reinforcement types on the performance of posterior large composite restorations. Two independent authors performed a comprehensive literature search using MEDLINE/PubMed, Google Scholar, and a manual search for cross references until July 2021. Authors selected only studies that contain comparisons between glass (continuous or short) and polyethylene (woven) fiber-reinforced composites (FRCs) in posterior cavities of human teeth, and that report the effect of fiber inclusion on fracture resistance, microleakage, and marginal adaptation of restorations. A number of 2711 potentially relevant articles were obtained from the electronic search. After extensive assessment, 2696 articles were ineligible to be included in the review, and only 15 articles met the inclusion criteria. Four out of nine studies, which tested the fracture resistance of FRC restorations, revealed similar performance of the glass and polyethylene fibers. The rest of the studies (n = 5) revealed statistically significant differences between the two types of fiber reinforcement, with the majority showed superior reinforcement of glass fiber. Moreover, the reviewed studies revealed that, using fibers within the composite restorations would reduce the microleakage and improve the marginal adaptation of the restoration regardless of the fiber type. FRCs tend to strengthen the restorations of structurally compromised teeth and improve their performance compared to plain composite restorations.

6.
Polymers (Basel) ; 13(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34578101

ABSTRACT

The purpose of this study was to evaluate the effects of interpenetrating polymer network (IPN) thermoplastic resin on the flexural strength of fibre-reinforced composite (FRC) with different IPN polymer compositions. The penetration of bonding resin into semi-IPN FRC posts was also evaluated. The IPN thermoplastic resin used was UDMA-MMA monomer with either PMMA (0.5%, 2%, 5%) or PMMA-copolymer (0.5%, 2%). A no added IPN polymer resin was also made. Mixed resin was impregnated to S- and E-glass fibre rovings. These resins and resin impregnated fibres were used for flexural strength (FS) test. To evaluate the penetration of bonding resin into semi-IPN post, SEM observation was done with various impregnation time and polymerization mehods (hand-light- and oven-cure). The result of FS was recorded from 111.7 MPa (no-IPN polymer/no-fibre-reinforcement) to 543.0 MPa (5% PMMA/S-glass FRC). ANOVA showed that there were significant differences between fibre-reinforcement and no-fibre-reinforcement (p < 0.01) both in S- and E-glass fibre groups, and between 0.5% PMMA and 5% PMMA in the S-glass FRC group. SEM micrographs showed that the penetration layers of bonding resin into hand-light cured semi-IPN posts were different according to impregnation time. Fibre reinforcement is effective to improve flexural strength. The depth of penetration layer of bonding resin into semi-IPN matrix resin was improved when a hand-light cure was used.

7.
Polymers (Basel) ; 13(14)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34301038

ABSTRACT

As a core build-up material, dual-cured (DC) resin-based composites are becoming popular. The aim of this research was to investigate specific physical and handling properties of new experimental short-fiber-reinforced DC resin composites (SFRCs) in comparison to different commercial, conventional DC materials (e.g., Gradia Core, Rebilda DC, LuxaCore Z, and Visalys® CemCore). Degree of monomer conversion (DC%) was determined by FTIR-spectrometry using either self- or light-curing mode. The flexural strength, modulus, and fracture toughness were calculated through a three-point bending setup. Viscosity was analyzed at room (22 °C) and mouth (35 °C) temperatures with a rotating disk rheometer. The surface microstructure of each resin composite was examined with scanning electron microscopy (SEM). Data were statistically analyzed with analysis of variance ANOVA (p = 0.05). The curing mode showed significant (p < 0.05) effect on the DC% and flexural properties of tested DC resin composites and differences were material dependent. SFRC exhibited the highest fracture toughness (2.3 MPa m1/2) values and LuxaCore showed the lowest values (1 MPa m1/2) among the tested materials (p < 0.05). After light curing, Gradia Core and SFRCs showed the highest flexural properties (p < 0.05), while the other resin composites had comparable values. The novel DC short-fiber-reinforced core build-up resin composite demonstrated super fracture toughness compared to the tested DC conventional resin composites.

8.
Materials (Basel) ; 14(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33947055

ABSTRACT

The purpose of this study was to investigate the effect of retainer material and retainer position on a tooth to resist movement of the tooth in a simulation model. Bidirectional continuous glass fiber-reinforced composite (FRC) retainers and control retainers of steel wires were tested. The FRC retainers had a polymer matrix of bisphenol-A-glycidyldimethacrylate (bis-GMA) and poly(methylmethacrylate) (PMMA), and it was cured with a photoinitiator system. The retainers were adhered to a lower jaw Frasaco model in two different positions. Resistance against the movement of one tooth was measured from two directions. The average load values within the FRC retainer groups were higher than within the metal retainer groups. The load values for the groups loaded from the axial direction were higher than those loaded from the buccal direction. FRC retainers, which were located 1-2 mm from the incisal edge, showed higher load values than those located 4-5 mm from the incisal edge. There was a significant difference in load values between FRC retainers and metal retainers (p < 0.01). The wire position and the direction of force also had significant effects (p < 0.01). There were no significant differences between metal retainer groups. The results of this study suggest that metal retainers are more flexible, allowing for tooth movements of larger magnitude than with FRC retainers.

9.
Materials (Basel) ; 14(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810268

ABSTRACT

The goal of current research was to investigate the influence of adding low shrinkage "Phene" like comonomers hexaethylene glycol bis(carbamate-isoproply-α-methylstyrene) (HE-Phene) and triethylene glycol bis(carbamate-isoproply-α-methylstyrene) (TE-Phene) on the surface and color characteristics of composite resin. A range of weight fractions (0, 10, 20, 30, 40 wt.%) of HE/TE-Phene monomers were mixed with bisphenol A glycidyl methacrylate (GMA)/triethylene glycol dimethacrylate (TEGDMA) monomer. Experimental composite resins were made by mixing 71 wt.% of silica fillers to 29 wt.% of the resin matrix. A Vickers indenter and glossmeter were used for testing surface hardness (SH) and gloss (SG) at 60°. A chewing-simulator was used to evaluate the surface wear after 15,000 cycles. Color change (∆E) and translucency parameter (TP) were measured using a spectrophotometer. Data showed that HE/TE-Phene monomer had no negative impact (p > 0.05) on surface gloss, wear, color change and translucency of experimental composite resins. Surface hardness was in a reducing direction with the increas in HE/TE-Phene weight fraction (p < 0.05). The study results suggested that incorporating HE/TE-Phene monomers up to 30 wt.% with Bis-GMA/TEGDMA resin did not negatively influence the surface integrity of composite resins except for SH.

10.
Polymers (Basel) ; 13(3)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499112

ABSTRACT

The research aimed to determine the tensile bond strength (TBS) between polymerized intact and ground fiber-reinforced composite (FRC) surfaces. FRC prepregs (a reinforcing fiber pre-impregnated with a semi-interpenetrating polymer network (semi-IPN) resin system; everStick C&B) were divided into two groups: intact FRCs (with a highly PMMA-enriched surface) and ground FRCs (with a low PMMA gradient). Each FRC group was treated with: StickRESIN and G-Multi PRIMER. These groups were further divided into four subgroups based on the application time of the treatment agents: 0.5, 1, 2, and 5 min. Next, a resin luting cement was applied to the FRC substrates on the top of the photo-polymerized treating agent. Thereafter, weight loss, surface microhardness, and TBS were evaluated. Three-factor analysis of variance (p ≤ 0.05) revealed significant differences in the TBS among the FRC groups. The highest TBS was recorded for the intact FRC surface treated with G-Multi PRIMER for 2 min (13.0 ± 1.2 MPa). The monomers and solvents of G-Multi PRIMER showed a time-dependent relationship between treatment time and TBS. They could diffuse into the FRC surface that has a higher PMMA gradient, further resulting in a high TBS between the FRC and resin luting cement.

11.
Dent Mater ; 37(3): 391-402, 2021 03.
Article in English | MEDLINE | ID: mdl-33353735

ABSTRACT

OBJECTIVES: The aim was to investigate the fatigue survival and marginal-gap inside the root-canal of endodontically treated (ET) premolars reinforced by various fiber-reinforced post-core composites (FRCs). Moreover, composite-curing at different depths in the canal was evaluated. METHODS: 170 intact upper-premolars were collected and randomly divided into ten groups (n = 15). One group served as control (intact-teeth). After endodontic procedure standard MO cavities were prepared and restored with different post-core fiber-reinforced materials and designs. Three-group (A1-A3) were restored with either packable and flowable short fiber-reinforced composite (SFRC) core or conventional composite-core. Two-group (B1-B2) were restored with SFRCs as short post (3 mm) and core. Four-group (C1-C4) were restored with SFRCs as post (6 mm) and core with or without unidirectional FRC posts (individually-made or conventional). After completing the restorations, teeth from Group C1-C4 (n = 5/group) were sectioned and stained. Specimens were viewed under a stereo-microscope and the percentage of microgaps within the root-canal was calculated. Fatigue-survival was measured using a cyclic-loading machine in the rest of the specimens. RESULTS: Application of flowable SFRC as luting-core material with individually-made FRC post (Group C3) did not differ from intact-teeth regarding fatigue-survival (p > 0.05). The rest of the groups produced significantly lower survival (p < 0.05) compared to intact-teeth. Post/core restorations made from packable SFRC (Group C1) had a lower microgap (19.1%) at the examined interphase in the root-canal than other groups. SIGNIFICANCE: The restoration of ET premolars with the use of individually-made FRC post and SFRC as luting-core material showed promising achievement regarding fatigue-resistance and survival.


Subject(s)
Post and Core Technique , Tooth Fractures , Tooth, Nonvital , Bicuspid , Composite Resins , Dental Stress Analysis , Humans , Materials Testing , Root Canal Therapy
12.
Dent Mater J ; 40(1): 165-172, 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33028792

ABSTRACT

This study evaluates the effect of fiber reinforcement quantity and position on fracture load of fixed dental prostheses specimens with different fibre reinforced composite (FRC)/ particulate filler composite (PFC) ratio in a cantilever beam test. Three types of specimen structures where made: Specimens with FRC, PFC, or with a combination of both. Specimen's size was 2.0×2.0×25 mm3 and the thicknesses of the FRC layers were 0, 0.5, 1.0, 1.5 and 2.0 mm. The layers of FRC were placed at the top or at the bottom. Eight groups of specimens were evaluated (n=15/group). The test specimens were statically-loaded until fracture. The fracture loads were linearly dependent on the quantity of the FRC reinforcement when placed at the top (R2=0.941) and bottom (R2=0.896) of the specimens. ANOVA revealed that reinforcement position on the tension side and higher FRC reinforcement volume in the test specimens had positive effect to load bearing capacity (p<0.001).


Subject(s)
Composite Resins , Dental Prosthesis , Dental Materials , Dental Stress Analysis , Glass , Materials Testing , Weight-Bearing
13.
Biomater Investig Dent ; 7(1): 80-85, 2020.
Article in English | MEDLINE | ID: mdl-33015638

ABSTRACT

Purpose: By combining the increased toughness of a resin composite reinforced with discontinuous fibers and the surface wear resistance of a particulate filler composite (PFC), a bilayered composite technique was recently introduced. This study aimed to evaluate the effect of the thickness of the overlaying PFC placed over a fiber-reinforced composite (FRC) core, on the fracture-behavior of direct crown restorations. Methods: Six groups of posterior crown restorations (n = 8/group) were fabricated having a discontinuous FRC-core (everX Flow) and a layer of surface PFC (Essentia U) with various thicknesses (0.5, 1.0, 1.5, 2.0 mm), with the remaining thickness of the bilayered being 6 mm. Control groups were only made of PFC or FRC materials. Restorations were statically loaded until fracture. Failure-modes were visually examined. Data were analyzed using ANOVA (p = .05) and regression analysis. Results: The regression analysis showed that by decreasing the thickness of PFC layer, the load bearing capacity of restorations increased linearly (R2=0.7909). ANOVA revealed that crown restorations made only from everX Flow composite had significantly higher load-bearing capacities (3990 ± 331 N) (p < .05) among all the groups tested. With regard to the failure-mode analysis, crowns that had a FRC core material of everX Flow revealed delamination of the PFC surface composite from the core. Crowns which were made only of PFC i.e. with no fiber reinforcement, showed a crushing-like fracture pattern. Conclusions: Restorations combining a thick FRC-core and a thin surface layer of PFC (0.5-1 mm), displayed promising performance related to fracture-behavior and load-bearing capacity.

14.
J Mech Behav Biomed Mater ; 108: 103832, 2020 08.
Article in English | MEDLINE | ID: mdl-32469727

ABSTRACT

New photocurable "Phene" like monomers Hexaethylene glycol bis(carbamate-isoproply-α-methylstyrene) (HE-Phene) and Triethylene glycol bis(carbamate-isoproply-α-methylstyrene) (TE-Phene) were synthesized and incorporated into Bis-GMA/TEGDMA with the aim of reducing polymerization shrinkage without detriment to the physical and handling properties of the resin composites. Phene like monomers (HE/TE-Phene) were synthesized through a one-step reaction route, and their structures were confirmed by FT-IR and 1H-NMR spectra. HE/TE-Phene were incorporated into Bis-GMA/TEGDMA (50/50,wt/wt) with a series of mass fraction (from 0 wt.% to 40 wt.%). Experimental resin composites were prepared by mixing 29 wt.% of resin matrix to 71 wt.% of particulate-fillers. Degree of conversion (DC) was determined by FT-IR analysis. The volumetric shrinkage (VS) was calculated as a buoyancy change in distilled water by means of the Archimedes principle. Polymerization shrinkage-stress (SS) was measured using the tensilometer technique. The flexural strength (FS), modulus (FM), and fracture toughness (FT) were measured using a three-point bending setup. Viscosity was analyzed with a rotating disk rheometer. Water sorption and solubility were also measured. ANOVA analysis showed that DC (after 40 s), VS, and SS were in a trend of decreasing with the increasing of HE/TE-Phene concentration. In general, the experimental resin composites had comparable FT, FS and FM (p > 0.05) when the mass fraction of HE/TE-Phene in resin matrix was not more than 30 wt.%. The overall tested properties prove that including HE/TE-Phene up to 30 wt.% into Bis-GMA/TEGDMA resin could be potentially useful in the formulation of low-shrinkage resin composites.


Subject(s)
Carbamates , Ethylene Glycol , Bisphenol A-Glycidyl Methacrylate , Composite Resins , Materials Testing , Methacrylates , Polyethylene Glycols , Polymethacrylic Acids , Spectroscopy, Fourier Transform Infrared , Styrenes
15.
Biomater Investig Dent ; 7(1): 1-8, 2020.
Article in English | MEDLINE | ID: mdl-32010900

ABSTRACT

Aim: The purpose of this in vitro study was to determine the effects of different polishing protocols on the surface gloss (SG) of different commercial dental resin composites (RCs). Material and methods: A total of 147 block-shaped specimens (40 mm length × 10 mm width × 2 mm thick) were made from conventional RCs (G-aenial Ant. and Flo X), bulk-fill RC (Filtek Bulk Fill), fluoride-releasing RCs (BEAUTIFIL II, ACTIVA-Restorative) and discontinuous microfiber-reinforced RCs (Alert and everX Flow). Each group was subdivided into seven subgroups (n = 3), according to polishing protocol: Laboratory-machine polishing with different siliconcarbide paper grits (G1: 320) → (G2: 800) → (G3: 1200) → (G4: 2000) → (G5: 4000). Chairside-hand polishing using a series of Sof-Lex spiral (G6) and abrasive polishing points (G7). Glossmeter was used to determine the SG at 60° incidence angle. SG was measured before and after polishing. Three-dimensional (3 D) noncontact optical profilometer and scanning electron microscopy (SEM) analysis were performed. Data were analyzed using ANOVA (p = .05). Results: Significant differences in SG (ranged 3-93 GU) were found according to the type of polishing protocol and RC (p < .05). Specimens polished with 4000 grit paper showed the highest SG (93 GU) values among all the groups tested. Conclusions: The tested chairside-hand polishing protocols presented lower SG values than laboratory-machine polishing (4000 silicon paper grit) and unpolished surfaces.

16.
J Mech Behav Biomed Mater ; 101: 103444, 2020 01.
Article in English | MEDLINE | ID: mdl-31561057

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the fracture-behavior of direct composite restorations made with two different composite-core materials. In addition, fracture toughness (FT), flexural strength (FS) and flexural modulus (FM) of tested composites were evaluated. METHODS: Twenty groups of posterior crown restorations were fabricated (n = 6/group). The groups were made of a 4-5 mm layer of composite-core materials (everX Flow and SDR Flow+) and covered by a 2 mm layer of conventional composite (G-aenial Anterior & Posterior, G-aenial Universal Injectable, Essentia, CeramX, Filtek Z500). Control groups were only made of conventional composites or composite-core materials. Crowns were statically loaded until fracture. Failure-modes were then visually examined. FT, FS and FM were determined for each tested composite (n = 6). RESULTS: ANOVA revealed that crown restorations made only from everX Flow composite had significantly higher load-bearing capacities (3866 ±â€¯263 N) (p < 0.05) among all the groups tested. No statistically significant differences were found in the load-bearing capacities between crowns made with different composite-core materials (p > 0.05). everX Flow exhibited the highest FT (2.8 MPa m1/2) and Z500 presented the highest FS values (197 MPa) (p < 0.05) among tested composites. With regard to the failure-mode analysis, crowns that had a fiber-reinforced core material of everX Flow revealed delaminating of surface conventional composite from the substructure layer. While in crowns that had a core material of SDR Flow+ or having only conventional composites with no fiber reinforcement, showed a crushing fracture pattern. CONCLUSION: Restorations combining a fiber-reinforced composite core and a surface layer of conventional composite, displayed promising performance related to fracture-behavior.


Subject(s)
Crowns , Mechanical Phenomena , Dental Materials , Prosthesis Failure
17.
J Adhes Dent ; 21(6): 509-516, 2019.
Article in English | MEDLINE | ID: mdl-31802066

ABSTRACT

PURPOSE: This study examined the influence of different monomer systems on the tensile bond strength between a resin composite and a polymerized fiber-reinforced composite (FRC). The influence of the age (shelf-life) of the FRC prepreg (reinforcing fiber pre-impregnated with a resin system) before preparing the FRC substrate for the bonding test was also assessed. MATERIALS AND METHODS: Semi-interpenetrating polymer network (semi-IPN)-based glass FRC prepregs were aged for various durations (1, 1.5, and 3 years) at 4°C before being used to prepare FRC substrates via light polymerization. Four groups of aged prepregs were prepared through different treatments with: 1. no primer; 2. a dimethacrylate-based adhesive primer; 3. a universal primer; and 4. a specific composite primer. Subsequently, a resin composite luting cement was applied on the treated FRC substrates and cured with light. The water sorption of the FRC-composite specimens was determined. Then, the differences in the tensile bond strength were evaluated using ANOVA (p ≤ 0.05). RESULTS: There were significant differences in the tensile bond strength between the composite cement and the FRC according to the primer used (p < 0.001), aging time (p < 0.001), and their interactive effect (p < 0.001). CONCLUSION: The monomers of the universal primer demonstrated the best ability to diffuse into the semi-IPN structure of the polymer matrix of FRC. This improved the interfacial bond strength between the composite cement and the FRC substrate.


Subject(s)
Composite Resins , Dental Bonding , Glass , Materials Testing , Polymerization , Resin Cements , Surface Properties
18.
Dent Mater ; 35(4): 627-635, 2019 04.
Article in English | MEDLINE | ID: mdl-30797550

ABSTRACT

OBJECTIVE: A new photocurable monomer, "Phene" (N-methyl-bis(ethyl-carbamate-isoproply-α-methylstyryl)amine) was synthesized and incorporated into Bis-GMA/TEGDMA with the aim of reducing polymerization shrinkage swithout detriment to the physical properties and wearing of the resin composites. METHODS: Phene was synthesized through a 2-step reaction route, and its structure was confirmed by FT-IR and 1H-NMR spectra. Phene was incorporated into Bis-GMA/TEGDMA (50/50, wt/wt) with a series of mass fraction (from 0 wt% to 40 wt%). Experimental resin composites were prepared by mixing 29 wt% of resin matrix to 71 wt% of particulate-fillers. Degree of conversion (DC) was determined by FT-IR analysis. The volumetric shrinkage (VS) was calculated as a buoyancy change in distilled water by means of the Archimedes principle. Polymerization shrinkage-stress (SS) was measured using the tensilometer technique. The flexural strength (FS), modulus (FM), and fracture toughness (FT) were measured using a three-point bending setup. A wear test was conducted with 15000 cycles using a dual-axis chewing simulator. Wear depth was measured by a three-dimensional (3D) non-contact optical-profilometer. RESULTS: ANOVA analysis showed that when mass fraction of Phene in resin matrix was more than 10 wt%, the obtained resin composite formulation had lower DC, VS and SS than control resin composite (p < 0.05). In general, the experimental resin composites had comparable FS and FM (p > 0.05) when the mass fraction of Phene in resin matrix was not more than 20 wt %. Resin composite with 20 wt% Phene had the lowest wear depth and fracture toughness values. SIGNIFICANCE: The overall tested properties prove that including Phene up to 20 wt% into Bis-GMA/TEGDMA resin could be potentially useful in the formulation of low-shrinkage resin composites.


Subject(s)
Composite Resins , Methacrylates , Bisphenol A-Glycidyl Methacrylate , Materials Testing , Polyethylene Glycols , Polymerization , Polymethacrylic Acids , Spectroscopy, Fourier Transform Infrared
19.
Odontology ; 107(3): 342-352, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30617664

ABSTRACT

This study aimed to evaluate certain physical properties including surface wear of a new experimental short fiber-reinforced flowable resin composite (SFRC) in comparison with different commercial flowable bulk fill resin composites (SDR, Tetric EvoFlow Bulk Fill, Filtek Bulk Fill Flowable and Estelite Bulk Fill Flow). The following properties were examined according to ISO standard: flexural strength, flexural modulus, fracture toughness, water sorption, volumetric shrinkage, and depth of cure. Degree of conversion (DC%) was determined by FTIR spectrometry. A wear test was conducted with 15000 chewing cycles using a dual-axis chewing simulator. Wear depth was measured by a three-dimensional (3D) noncontact optical profilometer. Scanning electron microscopy was used to evaluate the microstructure of SFRC. Data were statistically analyzed with analysis of variance ANOVA (p = 0.05). SFRC exhibited the highest fracture toughness (2.8 MPa m1/2) and flexural strength (146.5 MPa) values (p < 0.05) and the greatest depth of cure (5 mm) and lowest wear depth (18.2 µm) among the flowable bulk fill materials tested. SDR showed the lowest volumetric shrinkage percentage (2.9%), while the other resin composites had comparable volumetric shrinkage values (p > 0.05). The new short fiber-reinforced flowable resin composite differed significantly in its measured fracture toughness compared to the tested flowable bulk fill resin composites.


Subject(s)
Composite Resins , Dental Materials , Materials Testing , Polymerization , Surface Properties
20.
J Mech Behav Biomed Mater ; 88: 281-287, 2018 12.
Article in English | MEDLINE | ID: mdl-30196183

ABSTRACT

OBJECTIVES: The purpose of this study was to characterize the adhesive interface formed due to the dissolving capability of 4 primer systems into pre-polymerized semi-interpenetrating polymer network (semi-IPN)-based fiber-reinforced composite (FRC) and luting cement. MATERIALS AND METHODS: Semi-IPN FRC (everStick C&B, StickTech) prepregs stored for various durations (at 4 °C; 1, 1.5, and 3 years) were used to fabricate the specimens. FRC specimens (n = 10) were light-cured and treated with primers before adhering a luting cement onto them. Each age group was divided into four subgroups according to the primer used: no priming, a dimethacrylate adhesive primer, universal primer, and primer intended for composite surfaces. The degree of monomer conversion (DC%) of the luting cement; nanohardness, elastic modulus and structural information of the luting cement-FRC adhesive interface were measured. RESULTS: According to analysis of variance (P ≤ 0.05), no statistical difference was observed in the DC% among the tested groups. However, both universal and composite primers showed increased nanohardness in 1- and 1.5-year-aged groups. The highest nanohardness (0.55 ±â€¯0.21 GPa) and elastic modulus (14.27 ±â€¯5.19 GPa) were observed in specimens of 1-year-aged FRC primed with the application of universal primer. Raman spectroscopy and scanning electron microscopy examination confirmed the presence of poly(methyl methacrylate) at the interface when the FRC prepregs were aged for 3 years before use. CONCLUSION: Both primers improved diffusion of monomers of composite luting cement into the polymerized semi-IPN polymer structure and possible covalent binding with pendant methacrylate groups in the polymer matrix of FRC. The diffusing capability of universal and composite primers might increase the opportunity to form solid adhesive interface bonding between the FRC and composite luting cement.


Subject(s)
Dental Cements/chemistry , Mechanical Phenomena , Resins, Synthetic/chemistry , Materials Testing , Polymethyl Methacrylate/chemistry , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...