Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 609: 121146, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34600058

ABSTRACT

In the manufacturing of pharmaceutical Oral Solid Dosage (OSD) forms, Particle Size Distribution (PSD) and Tensile Strength (TS) are common in-process tests that are controlled in order to achieve the quality targets of the end-product. The Quality by Design (QbD) concept elaborates process understanding and sufficient controls. However, for older pharmaceutical products upscaled to commercial phase with Quality by Testing (QbT) approach, the knowhow of the product-specific critical parameters is often limited. In this study, two predictive machine learning (ML) models were used for a commercial tablet product, for which historical data of raw materials, production, in-process controls and condition monitoring were available. With the aforementioned data, the aim was to predict the PSD and the TS that indicate the product quality. The feature importance was used to evaluate the parameter importance for the PSD and the TS. Partial dependence, in turn, was used to estimate the parameter impact on the predicted TS. The study illustrates the capability of the ML models to bring additional value for commercial products through the enhanced product-related knowhow.


Subject(s)
Machine Learning , Technology, Pharmaceutical , Drug Compounding , Particle Size , Tablets , Tensile Strength
2.
J Chem Phys ; 151(24): 244113, 2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31893926

ABSTRACT

We benchmark a selection of semiclassical and perturbative dynamics techniques by investigating the correlated evolution of a cavity-bound atomic system to assess their applicability to study problems involving strong light-matter interactions in quantum cavities. The model system of interest features spontaneous emission, interference, and strong coupling behavior and necessitates the consideration of vacuum fluctuations and correlated light-matter dynamics. We compare a selection of approximate dynamics approaches including fewest switches surface hopping (FSSH), multitrajectory Ehrenfest dynamics, linearized semiclassical dynamics, and partially linearized semiclassical dynamics. Furthermore, investigating self-consistent perturbative methods, we apply the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy in the second Born approximation. With the exception of fewest switches surface hopping, all methods provide a reasonable level of accuracy for the correlated light-matter dynamics, with most methods lacking the capacity to fully capture interference effects.

3.
J Chem Phys ; 143(23): 234102, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26696041

ABSTRACT

We present a Kadanoff-Baym formalism to study time-dependent phenomena for systems of interacting electrons and phonons in the framework of many-body perturbation theory. The formalism takes correctly into account effects of the initial preparation of an equilibrium state and allows for an explicit time-dependence of both the electronic and phononic degrees of freedom. The method is applied to investigate the charge neutral and non-neutral excitation spectra of a homogeneous, two-site, two-electron Holstein model. This is an extension of a previous study of the ground state properties in the Hartree (H), partially self-consistent Born (Gd) and fully self-consistent Born (GD) approximations published in Säkkinen et al. [J. Chem. Phys. 143, 234101 (2015)]. Here, the homogeneous ground state solution is shown to become unstable for a sufficiently strong interaction while a symmetry-broken ground state solution is shown to be stable in the Hartree approximation. Signatures of this instability are observed for the partially self-consistent Born approximation but are not found for the fully self-consistent Born approximation. By understanding the stability properties, we are able to study the linear response regime by calculating the density-density response function by time-propagation. This amounts to a solution of the Bethe-Salpeter equation with a sophisticated kernel. The results indicate that none of the approximations is able to describe the response function during or beyond the bipolaronic crossover for the parameters investigated. Overall, we provide an extensive discussion on when the approximations are valid and how they fail to describe the studied exact properties of the chosen model system.

4.
J Chem Phys ; 143(23): 234101, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26696040

ABSTRACT

We study ground-state properties of a two-site, two-electron Holstein model describing two molecules coupled indirectly via electron-phonon interaction by using both exact diagonalization and self-consistent diagrammatic many-body perturbation theory. The Hartree and self-consistent Born approximations used in the present work are studied at different levels of self-consistency. The governing equations are shown to exhibit multiple solutions when the electron-phonon interaction is sufficiently strong, whereas at smaller interactions, only a single solution is found. The additional solutions at larger electron-phonon couplings correspond to symmetry-broken states with inhomogeneous electron densities. A comparison to exact results indicates that this symmetry breaking is strongly correlated with the formation of a bipolaron state in which the two electrons prefer to reside on the same molecule. The results further show that the Hartree and partially self-consistent Born solutions obtained by enforcing symmetry do not compare well with exact energetics, while the fully self-consistent Born approximation improves the qualitative and quantitative agreement with exact results in the same symmetric case. This together with a presented natural occupation number analysis supports the conclusion that the fully self-consistent approximation describes partially the bipolaron crossover. These results contribute to better understanding how these approximations cope with the strong localizing effect of the electron-phonon interaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...