Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(23): e2207207, 2023 06.
Article in English | MEDLINE | ID: mdl-36922728

ABSTRACT

In this study, a 96-well exposure system for safety assessment of nanomaterials is developed and characterized using an air-liquid interface lung epithelial model. This system is designed for sequential nebulization. Distribution studies verify the reproducible distribution over all 96 wells, with lower insert-to-insert variability compared to non-sequential application. With a first set of chemicals (TritonX), drugs (Bortezomib), and nanomaterials (silver nanoparticles and (non-)fluorescent crystalline nanocellulose), sequential exposure studies are performed with human lung epithelial cells followed by quantification of the deposited mass and of cell viability. The developed exposure system offers for the first time the possibility of exposing an air-liquid interface model in a 96-well format, resulting in high-throughput rates, combined with the feature for sequential dosing. This exposure system allows the possibility of creating dose-response curves resulting in the generation of more reliable cell-based assay data for many types of applications, such as safety analysis. In addition to chemicals and drugs, nanomaterials with spherical shapes, but also morphologically more complex nanostructures can be exposed sequentially with high efficiency. This allows new perspectives on in vivo-like and animal-free approaches for chemical and pharmaceutical safety assessment, in line with the 3R principle of replacing and reducing animal experiments.


Subject(s)
Metal Nanoparticles , Humans , Silver , Lung , Epithelial Cells , Bortezomib
2.
Materials (Basel) ; 12(14)2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31323894

ABSTRACT

Silica gel is a well-known desiccant. Through dispersion of silica gel in a polymer, films can be made that absorb and desorb water vapor. The water vapor absorption becomes reversible by exposing such films to a water vapor pressure below that of the water vapor pressure during absorption, or by heating the film. The intention of this study was to achieve a better understanding about the water vapor absorption, permeability (H2O, N2, O2, CO2), and mechanical properties of films with dispersed silica gel. Low-density polyethylene (PE-LD) monolayer films with a nominal silica gel concentration of 0.2, 0.4, and 0.6 g dispersed silica gel per 1 g film (PE-LD) were prepared and they absorbed up to 0.08 g water vapor per 1 g of film. The water vapor absorption as a function of time was described by using effective diffusion coefficients. The steady state (effective) water vapor permeation coefficients of the films with dispersed silica gel were a factor of 2 to 14 (8.4 to 60.2·10-12 mg·cm·(cm²·s·Pa)-1, 23 °C) higher than for pure PE-LD films (4.3·10-12 mg·cm·(cm²·s·Pa)-1, 23 °C). On the other hand, the steady state gas permeabilities for N2, O2, and CO2 were reduced to around one-third of the pure PE-LD films. An important result is that (effective) water vapor permeation coefficients calculated from results of sorption and measured by permeation experiments yielded similar values. It has been found that it is possible to describe the sorption and diffusion behavior of water by knowing the permeability coefficient and the sorption capacity of the film (Peff.≈Seff.·Deff.). The tensile stress changed only slightly (values between 10 and 14 N mm-²), while the tensile strain at break was reduced with higher nominal silica gel concentration from 318 length-% (pure PE-LD film) to 5 length-% (PE-LD with 0.6 g dispersed silica gel per 1 g film).

3.
Materials (Basel) ; 10(5)2017 May 03.
Article in English | MEDLINE | ID: mdl-28772849

ABSTRACT

Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O2/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (aw > 0.86).

4.
Front Chem ; 4: 49, 2016.
Article in English | MEDLINE | ID: mdl-28149835

ABSTRACT

Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm3 (STP/standard temperature and pressure) 100 µm (m2 d bar)-1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 µm (m2 d)-1 measured at 50 to 0% r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient.

SELECTION OF CITATIONS
SEARCH DETAIL
...