Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Eur J Med Chem ; 265: 116122, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38199164

ABSTRACT

Two series of N-(heteroaryl)thiophene sulfonamides, encompassing either a methylene imidazole group or a tert-butylimidazolylacetyl group in the meta position of the benzene ring, have been synthesized. An AT2R selective ligand with a Ki of 42 nM was identified in the first series and in the second series, six AT2R selective ligands with significantly improved binding affinities and Ki values of <5 nM were discovered. The binding modes to AT2R were explored by docking calculations combined with molecular dynamics simulations. Although some of the high affinity ligands exhibited fair stability in human liver microsomes, comparable to that observed with C21 undergoing clinical trials, most ligands displayed a very low metabolic stability with t½ of less than 10 min in human liver microsomes. The most promising ligand, with an AT2R Ki value of 4.9 nM and with intermediate stability in human hepatocytes (t½ = 77 min) caused a concentration-dependent vasorelaxation of pre-contracted mouse aorta.


Subject(s)
Receptor, Angiotensin, Type 2 , Sulfonamides , Mice , Humans , Animals , Receptor, Angiotensin, Type 2/metabolism , Ligands , Sulfonamides/chemistry , Thiophenes/chemistry , Aorta/metabolism , Angiotensin II/metabolism
2.
J Colloid Interface Sci ; 577: 92-100, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32473480

ABSTRACT

Phospholipids constitute biocompatible and safe excipients for pulmonary drug delivery. They can retard the drug release and, when PEGylated, also prolong the residence time in the lung. The aim of this work was to assess the structure and coherence of phospholipid coatings formed by spray drying on hydrophilic surfaces (silica microparticles) on the nanoscale and, in particular, the effect of addition of PEGylated lipids thereon. Scanning electron microscopy showed the presence of nanoparticles of varying sizes on the microparticles with different PEGylated lipid concentrations. Atomic force microscopy confirmed the presence of a lipid coating on the spray-dried microparticles. It also revealed that the lipid-coated microparticles without PEGylated lipids had a rather homogenous coating whereas those with PEGylated lipids had a very heterogeneous coating with defects, which was corroborated by confocal laser scanning microscopy. All coated microparticles had good dispersibility without agglomerate formation, as indicated by particle size measurements. This study has demonstrated that coherent coatings of phospholipids on hydrophilic surfaces can be obtained by spray drying. However, the incorporation of PEGylated lipids in a one-step spray-drying process to prepare lipid coated microparticles with both controlled-release and stealth properties is very challenging.


Subject(s)
Phospholipids , Silicon Dioxide , Microscopy, Electron, Scanning , Particle Size , Polyethylene Glycols , Spray Drying
3.
RSC Med Chem ; 11(2): 234-244, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-33479630

ABSTRACT

Macrocyclic analogues of the linear hexapeptide, angiotensin IV (AngIV) have proved to be potent inhibitors of insulin-regulated aminopeptidase (IRAP, oxytocinase, EC 3.4.11.3). Along with higher affinity, macrocycles may also offer better metabolic stability, membrane permeability and selectivity, however predicting the outcome of particular cycle modifications is challenging. Here we describe the development of a series of macrocyclic IRAP inhibitors with either disulphide, olefin metathesis or lactam bridges and variations of ring size and other functionality. The binding mode of these compounds is proposed based on molecular dynamics analysis. Estimation of binding affinities (ΔG) and relative binding free energies (ΔΔG) with the linear interaction energy (LIE) method and free energy perturbation (FEP) method showed good general agreement with the observed inhibitory potency. Experimental and calculated data highlight the cumulative importance of an intact N-terminal peptide, the specific nature of the macrocycle, the phenolic oxygen and the C-terminal functionality.

4.
Nat Methods ; 16(10): 1021-1028, 2019 10.
Article in English | MEDLINE | ID: mdl-31548706

ABSTRACT

We present a mass spectrometry imaging (MSI) approach for the comprehensive mapping of neurotransmitter networks in specific brain regions. Our fluoromethylpyridinium-based reactive matrices facilitate the covalent charge-tagging of molecules containing phenolic hydroxyl and/or primary or secondary amine groups, including dopaminergic and serotonergic neurotransmitters and their associated metabolites. These matrices improved the matrix-assisted laser desorption/ionization (MALDI)-MSI detection limit toward low-abundance neurotransmitters and facilitated the simultaneous imaging of neurotransmitters in fine structures of the brain at a lateral resolution of 10 µm. We demonstrate strategies for the identification of unknown molecular species using the innate chemoselectivity of the reactive matrices and the unique isotopic pattern of a brominated reactive matrix. We illustrate the capabilities of the developed method on Parkinsonian brain samples from human post-mortem tissue and animal models. The direct imaging of neurotransmitter systems provides a method for exploring how various neurological diseases affect specific brain regions through neurotransmitter modulation.


Subject(s)
Neurotransmitter Agents/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Brain/metabolism , Disease Models, Animal , Humans , Limit of Detection , Parkinson Disease/metabolism , Primates , Rats
5.
ACS Omega ; 3(4): 4509-4521, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-30023895

ABSTRACT

The insulin-regulated aminopeptidase (IRAP) is a membrane-bound zinc metallopeptidase with many important regulatory functions. It has been demonstrated that inhibition of IRAP by angiotensin IV (Ang IV) and other peptides, as well as more druglike inhibitors, improves cognition in several rodent models. We recently reported a series of aryl sulfonamides as small-molecule IRAP inhibitors and a promising scaffold for pharmacological intervention. We have now expanded with a number of derivatives, report their stability in liver microsomes, and characterize the activity of the whole series in a new assay performed on recombinant human IRAP. Several compounds, such as the new fluorinated derivative 29, present submicromolar affinity and high metabolic stability. Starting from the two binding modes previously proposed for the sulfonamide scaffold, we systematically performed molecular dynamics simulations and binding affinity estimation with the linear interaction energy method for the full compound series. The significant agreement with experimental affinities suggests one of the binding modes, which was further confirmed by the excellent correlation for binding affinity differences between the selected pair of compounds obtained by rigorous free energy perturbation calculations. The new experimental data and the computationally derived structure-activity relationship of the sulfonamide series provide valuable information for further lead optimization of novel IRAP inhibitors.

6.
Bioorg Med Chem Lett ; 28(3): 519-522, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29279275

ABSTRACT

A series of AT2R ligands have been synthesized applying a quick, simple, and safe transesterification-type reaction whereby the sulfonyl carbamate alkyl tail of the selective AT2R antagonist C38 was varied. Furthermore, a limited number of compounds where acyl sulfonamides and sulfonyl ureas served as carboxylic acid bioisosteres were synthesized and evaluated. By reducing the size of the alkyl chain of the sulfonyl carbamates, ligands 7a and 7b were identified with significantly improved in vitro metabolic stability in both human and mouse liver microsomes as compared to C38 while retaining the AT2R binding affinity and AT2R/AT1R selectivity. Eight of the compounds synthesized exhibit an improved stability in human microsomes as compared to C38.


Subject(s)
Esters/pharmacology , Microsomes, Liver/chemistry , Receptor, Angiotensin, Type 2/metabolism , Sulfonamides/pharmacology , Urea/pharmacology , Dose-Response Relationship, Drug , Esters/chemical synthesis , Esters/chemistry , Humans , Ligands , Microsomes, Liver/metabolism , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Urea/analogs & derivatives , Urea/chemistry
7.
Org Lett ; 19(10): 2738-2741, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28471686

ABSTRACT

We report a highly diastereoselective synthesis of cyclopentene-spirooxindole derivatives via an intramolecular Heck-Mizoroki reaction using aryl bromides as precursors. The reactions were performed under dry conditions or in a DMF-water system. This protocol can be useful to introduce several functionalities to the aromatic nucleus of the spirooxindoles. DFT calculations were performed to rationalize the high antiselectivity. A functionalized spiroproduct was transformed into a cyclic amino acid derivative.

8.
Curr Protein Pept Sci ; 18(8): 809-818, 2017.
Article in English | MEDLINE | ID: mdl-28164758

ABSTRACT

In 2004, the first nonpeptide selective angiotensin II type 2 receptor (AT2R) agonist was reported. This nonpeptide (C21), which, exerts anti-inflammatory and antifibrotic actions in vivo, has been extensively explored and is currently in clinical trials. Subsequently, a large number of related drug-like AT2R agonists have been disclosed. Reviews that summarize known structure-activity relationships (SAR) of nonpeptide AT2R agonists have recently appeared in the literature; however, very few reviews discuss the role of angiotensin peptides as AT2R agonists. Furthermore, to date, there have been no reports focusing on the medicinal chemistry perspective of peptide AT2R agonists. In the present review, reports on linear and conformationally constrained Ang II analogues, with a focus on AT2R selective ligands that are proven to act as agonists at the AT2 receptor are summarized. The impact of truncations and macrocyclizations of Ang II analogues and of incorporation of scaffolds that mimic secondary structures into Ang II related peptides is highlighted. A survey of the efforts to transform the nonselective octapeptide Ang II to more drug-like selective AT2R agonists is presented. The relationship between the structures of the AT2R agonists and their affinity to the AT2R is briefly discussed and common pharmacophore elements of AT2R selective Ang II peptide analogues and selective nonpeptide AT2R agonists are compared.


Subject(s)
Angiotensin II/analogs & derivatives , Anti-Inflammatory Agents/chemistry , Antihypertensive Agents/chemistry , Peptides/chemistry , Receptor, Angiotensin, Type 2/agonists , Sulfonamides/chemistry , Thiophenes/chemistry , Angiotensin II/chemical synthesis , Angiotensin II/pharmacology , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Antihypertensive Agents/chemical synthesis , Antihypertensive Agents/pharmacology , Gene Expression , Humans , Hypertension/drug therapy , Hypertension/genetics , Hypertension/metabolism , Hypertension/physiopathology , Inflammation , Kinetics , Peptides/chemical synthesis , Peptides/pharmacology , Peptidomimetics/chemical synthesis , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Receptor, Angiotensin, Type 2/genetics , Receptor, Angiotensin, Type 2/metabolism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Thiophenes/chemical synthesis , Thiophenes/pharmacology
9.
ACS Chem Neurosci ; 7(10): 1383-1392, 2016 10 19.
Article in English | MEDLINE | ID: mdl-27501164

ABSTRACT

The zinc metallopeptidase insulin regulated aminopeptidase (IRAP), which is highly expressed in the hippocampus and other brain regions associated with cognitive function, has been identified as a high-affinity binding site of the hexapeptide angiotensin IV (Ang IV). This hexapeptide is thought to facilitate learning and memory by binding to the catalytic site of IRAP to inhibit its enzymatic activity. In support of this hypothesis, low molecular weight, nonpeptide specific inhibitors of IRAP have been shown to enhance memory in rodent models. Recently, it was demonstrated that linear and macrocyclic Ang IV-derived peptides can alter the shape and increase the number of dendritic spines in hippocampal cultures, properties associated with enhanced cognitive performance. After screening a library of 10 500 drug-like substances for their ability to inhibit IRAP, we identified a series of low molecular weight aryl sulfonamides, which exhibit no structural similarity to Ang IV, as moderately potent IRAP inhibitors. A structural and biological characterization of three of these aryl sulfonamides was performed. Their binding modes to human IRAP were explored by docking calculations combined with molecular dynamics simulations and binding affinity estimations using the linear interaction energy method. Two alternative binding modes emerged from this analysis, both of which correctly rank the ligands according to their experimental binding affinities for this series of compounds. Finally, we show that two of these drug-like IRAP inhibitors can alter dendritic spine morphology and increase spine density in primary cultures of hippocampal neurons.


Subject(s)
Cystinyl Aminopeptidase/antagonists & inhibitors , Dendritic Spines/drug effects , Enzyme Inhibitors/pharmacology , Hippocampus/cytology , Sulfonamides/pharmacology , Animals , CD13 Antigens/metabolism , Cells, Cultured , Coculture Techniques , Cystinyl Aminopeptidase/metabolism , Dendritic Spines/enzymology , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Epoxide Hydrolases/genetics , Epoxide Hydrolases/metabolism , HEK293 Cells , Hippocampus/drug effects , Hippocampus/enzymology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Rats, Sprague-Dawley , Recombinant Proteins/genetics , Sulfonamides/chemical synthesis
10.
Mol Pharmacol ; 89(4): 413-24, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26769413

ABSTRACT

Angiotensin IV (Ang IV) and related peptide analogs, as well as nonpeptide inhibitors of insulin-regulated aminopeptidase (IRAP), have previously been shown to enhance memory and cognition in animal models. Furthermore, the endogenous IRAP substrates oxytocin and vasopressin are known to facilitate learning and memory. In this study, the two recently synthesized 13-membered macrocyclic competitive IRAP inhibitors HA08 and HA09, which were designed to mimic the N terminus of oxytocin and vasopressin, were assessed and compared based on their ability to bind to the IRAP active site, and alter dendritic spine density in rat hippocampal primary cultures. The binding modes of the IRAP inhibitors HA08, HA09, and of Ang IV in either the extended or γ-turn conformation at the C terminus to human IRAP were predicted by docking and molecular dynamics simulations. The binding free energies calculated with the linear interaction energy method, which are in excellent agreement with experimental data and simulations, have been used to explain the differences in activities of the IRAP inhibitors, both of which are structurally very similar, but differ only with regard to one stereogenic center. In addition, we show that HA08, which is 100-fold more potent than the epimer HA09, can enhance dendritic spine number and alter morphology, a process associated with memory facilitation. Therefore, HA08, one of the most potent IRAP inhibitors known today, may serve as a suitable starting point for medicinal chemistry programs aided by MD simulations aimed at discovering more drug-like cognitive enhancers acting via augmenting synaptic plasticity.


Subject(s)
Cystinyl Aminopeptidase/antagonists & inhibitors , Cystinyl Aminopeptidase/metabolism , Dendritic Spines/metabolism , Disulfides/metabolism , Macrocyclic Compounds/metabolism , Animals , Cells, Cultured , Crystallography , Cystinyl Aminopeptidase/analysis , Dendritic Spines/chemistry , Disulfides/pharmacology , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Female , HEK293 Cells , Humans , Macrocyclic Compounds/pharmacology , Pregnancy , Protein Binding/physiology , Rats , Rats, Sprague-Dawley
11.
J Org Chem ; 79(24): 12018-32, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25295849

ABSTRACT

A fast and efficient protocol for the palladium(II)-catalyzed production of aryl ketones from sodium arylsulfinates and various organic nitriles under controlled microwave irradiation has been developed. The wide scope of the reaction has been demonstrated by combining 14 sodium arylsulfinates and 21 nitriles to give 55 examples of aryl ketones. One additional example illustrated that, through the choice of the nitrile reactant, benzofurans are also accessible. The reaction mechanism was investigated by electrospray ionization mass spectrometry and DFT calculations. The desulfitative synthesis of aryl ketones from nitriles was also compared to the corresponding transformation starting from benzoic acids. Comparison of the energy profiles indicates that the free energy requirement for decarboxylation of 2,6-dimethoxybenzoic acid and especially benzoic acid is higher than the corresponding desulfitative process for generating the key aryl palladium intermediate. The palladium(II) intermediates detected by ESI-MS and the DFT calculations provide a detailed understanding of the catalytic cycle.


Subject(s)
Ketones/chemical synthesis , Nitriles/chemistry , Palladium/chemistry , Sodium/chemistry , Sulfinic Acids/chemistry , Catalysis , Ketones/chemistry , Molecular Structure , Quantum Theory , Spectrometry, Mass, Electrospray Ionization
12.
ChemistryOpen ; 3(6): 256-63, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25558444

ABSTRACT

The inhibition of insulin-regulated aminopeptidase (IRAP, EC 3.4.11.3) by angiotenesin IV is known to improve memory and learning in rats. Screening 10 500 low-molecular-weight compounds in an enzyme inhibition assay with IRAP from Chinese Hamster Ovary (CHO) cells provided an arylsulfonamide (N-(3-(1H-tetrazol-5-yl)phenyl)-4-bromo-5-chlorothiophene-2-sulfonamide), comprising a tetrazole in the meta position of the aromatic ring, as a hit. Analogues of this hit were synthesized, and their inhibitory capacities were determined. A small structure-activity relationship study revealed that the sulfonamide function and the tetrazole ring are crucial for IRAP inhibition. The inhibitors exhibited a moderate inhibitory potency with an IC50=1.1±0.5 µm for the best inhibitor in the series. Further optimization of this new class of IRAP inhibitors is required to make them attractive as research tools and as potential cognitive enhancers.

13.
Beilstein J Org Chem ; 9: 2079-87, 2013.
Article in English | MEDLINE | ID: mdl-24204419

ABSTRACT

In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe), thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications.

14.
Chemistry ; 19(41): 13803-10, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-23983102

ABSTRACT

A fast and convenient synthesis of aryl amidines starting from carboxylic acids and cyanamides is reported. The reaction was achieved by palladium(II)-catalysis in a one-step microwave protocol using [Pd(O2 CCF3 )2 ], 6-methyl-2,2'-bipyridyl and trifluoroacetic acid (TFA) in N-methylpyrrolidinone (NMP), providing the corresponding aryl amidines in moderate to excellent yields. The protocol is very robust with regards to the cyanamide coupling partner but requires electron-rich ortho-substituted aryl carboxylic acids. Mechanistic insight was provided by a DFT investigation and direct ESI-MS studies of the reaction. The results of the DFT study correlated well with the experimental findings and, together with the ESI-MS study, support the suggested mechanism. Furthermore, a scale-out (scale-up) was performed with a non-resonant microwave continuous-flow system, achieving a maximum throughput of 11 mmol h(-1) by using a glass reactor with an inner diameter of 3 mm at a flow rate of 1 mL min(-1) .


Subject(s)
2,2'-Dipyridyl/chemistry , Amidines/chemical synthesis , Carboxylic Acids/chemistry , Palladium/chemistry , Amidines/chemistry , Catalysis , Molecular Structure
15.
Org Lett ; 14(9): 2394-7, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22509992

ABSTRACT

A fast and convenient synthesis of arylamidines starting from readily available potassium aryltrifluoroborates and cyanamides is reported. The coupling was achieved by Pd(II)-catalysis in a one step 20 min microwave protocol using Pd(O(2)CCF(3)), 6-methyl-2,2'-bipyridyl, TFA, and MeOH, providing the corresponding arylamidines in moderate to excellent yields.


Subject(s)
Amidines/chemical synthesis , Borates/chemistry , Palladium/chemistry , Amidines/chemistry , Catalysis , Combinatorial Chemistry Techniques , Cyanamide/chemistry , Microwaves , Molecular Structure , Potassium/chemistry
17.
Bioorg Med Chem ; 19(1): 145-55, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21183353

ABSTRACT

Inhibition of the BACE-1 protease enzyme has over the recent decade developed into a promising drug strategy for Alzheimer therapy. In this report, more than 20 new BACE-1 protease inhibitors based on α-phenylnorstatine, α-benzylnorstatine, iso-serine, and ß-alanine moieties have been prepared. The inhibitors were synthesized by applying Fmoc solid phase methodology and evaluated for their inhibitory properties. The most potent inhibitor, tert-alcohol containing (R)-12 (IC(50)=0.19µM) was co-crystallized in the active site of the BACE-1 protease, furnishing a novel binding mode in which the N-terminal amine makes a hydrogen bond to one of the catalytic aspartic acids.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Phenylbutyrates/pharmacology , Protease Inhibitors/pharmacology , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Mass Spectrometry , Phenylbutyrates/chemistry , Protease Inhibitors/chemistry
18.
Chemistry ; 15(47): 13069-74, 2009 Dec 07.
Article in English | MEDLINE | ID: mdl-19856344

ABSTRACT

The first Pd(II)-catalyzed P arylation has been performed by using palladium acetate, the rigid bidentate ligand dmphen (dmphen=2,9-dimethyl-1,10-phenanthroline), and without the addition of base or acid. Couplings of arylboronic acids or aryl trifluoroborates with H-phosphonate dialkyl esters were conducted in 30 min with controlled microwave (MW) heating under non-inert conditions. Aryl phosphites were also synthesized at room temperature with atmospheric air as the sole reoxidant. The arylated phosphonates were isolated in 44-90 % yields. The excellent chemoselectivity of the method was illustrated in the synthesis of a Mycobacterium tuberculosis glutamine synthetase (MTB-GS) inhibitor. Online ESIMS was used to detect cationic palladium species in ongoing reactions directly, and a catalytic cycle has been proposed based on these results.


Subject(s)
Boronic Acids/chemistry , Organometallic Compounds/chemistry , Palladium/chemistry , Catalysis , Esters , Ligands , Microwaves , Stereoisomerism
20.
Chemistry ; 15(18): 4630-6, 2009.
Article in English | MEDLINE | ID: mdl-19274694

ABSTRACT

One Heck of a reaction: Treatment of arylboronic acids or aryltrifluoroborates with vinyl acetate by using a palladium(II) catalyst gives the corresponding styrenes (see scheme). No palladium reoxidant is needed and the vinylation is performed under non-inert conditionsReactions of aromatic and heteroaromatic boronic acids or aryltrifluoroborate salts with vinyl acetate in the presence of a palladium(II) catalyst give the corresponding styrenes in good yields. This Heck reaction proceeds with microwave heating in less than 30 min at 140 degrees C in the absence of base and tolerates a variety of substituents. No palladium reoxidant is needed and the vinylation is performed under non-inert conditions. Mass spectrometry (electrospray ionization mass spectrometry (ESIMS) and tandem mass spectrometry (MS/MS)) was used to identify cationic palladium-containing complexes in ongoing reactions. The key intermediates that have been detected, together with experiments that used deuterated vinyl acetate, support the existence of catalytically active palladium hydride species, and that it is the arylation of ethylene, not vinyl acetate, which generates the styrene product. The mechanism of the reaction is discussed in terms of the palladium(II) intermediates mentioned above.


Subject(s)
Boronic Acids/chemistry , Palladium/chemistry , Styrenes/chemical synthesis , Vinyl Compounds/chemistry , Catalysis , Spectrometry, Mass, Electrospray Ionization , Styrenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...