Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 10(1): 2267, 2020 02 10.
Article in English | MEDLINE | ID: mdl-32041988

ABSTRACT

Understanding the geodynamic and Earth surface processes at the origin of post-collisional surface uplift in mountain ranges requires reconstruction of paleo-elevation. Here, we focus on the topographic evolution of the Cerdanya Basin in the eastern Pyrenees formed by post-orogenic extension during the Late Miocene. Stable isotope (δ18O) analyses of small rodent teeth and biogenic carbonates show the basin uplifted by 500 m since 6.5 Ma. These new paleoaltitudes constraints when combined with the regional geology and geophysical data reveal the anomalously high topography of the region is the result of density changes in the sublithospheric mantle associated with crustal thinning and then opening of Gulf of Lion during the Chattian-early Burdigalian.

2.
Acta Biomater ; 10(9): 3952-8, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24389267

ABSTRACT

A series of fossil tooth enamel samples was investigated by Fourier transform infrared (FTIR) spectroscopy, (13)C and (19)F magic-angle spinning nuclear magnetic resonance (MAS NMR) and scanning electron microscopy (SEM). Tooth remains were collected in Mio-Pliocene deposits of the Tugen Hills in Kenya. Significant transformations were observed in fossil enamel as a function of increasing fluorine content (up to 2.8wt.%). FTIR spectroscopy revealed a shift of the ν1 PO4 stretching band to higher frequency. The ν2 CO3 vibrational band showed a decrease in the intensity of the primary B-type carbonate signal, which was replaced by a specific band at 864cm(-1). This last band was ascribed to a specific carbonate environment in which the carbonate group is closely associated to a fluoride ion. The occurrence of this carbonate defect was consistently attested by the observation of two different fluoride signals in the (19)F NMR spectra. One main signal, at ∼-100ppm, is related to structural F ions in the apatite channel and the other, at -88ppm, corresponds to the composite defect. These spectroscopic observations can be understood as resulting from the mixture of two phases: biogenic hydroxylapatite (bioapatite) and secondary fluorapatite. SEM observations of the most altered sample confirmed the extensive replacement of the bioapatite by fluorapatite, resulting from the dissolution of the primary bioapatite followed by the precipitation of carbonate-fluorapatite. The ν2 CO3 IR bands can be efficiently used to monitor the extent of this type of bioapatite transformation during fossilization.


Subject(s)
Dental Enamel/chemistry , Fossils , Magnetic Resonance Spectroscopy , Animals , Apatites/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Crystallization , Dental Enamel/ultrastructure , Kenya , Spectroscopy, Fourier Transform Infrared , Vibration
3.
J Hum Evol ; 53(5): 549-59, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17905413

ABSTRACT

The emergence of C(4) grass biomes is believed to have first taken place in the upper Miocene, when a series of events modified global climate with long-lasting impacts on continental biotas. Changes included major shifts in floral composition-characterized in Africa by shrinking of forests and emergence of C(4) grasses and more open landscapes-followed by large-scale evolutionary shifts in faunal communities. The timing of the emergence of C(4) grasses, and the subsequent global expansion of C(4) grass-dominated biomes, however, is disputed, leading to contrasting views of the patterns of environmental changes and their links to faunal shifts, including those of early hominins. Here we evaluate the existing isotopic evidence available for central, eastern, and southern Africa, and review interpretations in light of these data. Pedogenic and biomineral carbonate delta(13)C data suggest that clear evidence for C(4) biomass in low latitudes exists only from 7-8 Ma. This likely postdates the emergence of C(4) plants, whose physiology is adapted to low atmospheric carbon dioxide concentrations. Biomes with C(4) grasses appeared later in mid-latitude sites. Moreover, C(4) grasses apparently remained a relatively minor component of most environments until the late Pliocene and early Pleistocene. Hence establishment of C(4) grasses, even as minor components of African biomes, precedes the very earliest evidence for bipedalism by two million years, and the more abundant and secure evidence by some three to four million years. This may suggest a protracted process of hominin adaptation to these emerging, more open landscapes.


Subject(s)
Biological Evolution , Hominidae/genetics , Paleontology , Poaceae/genetics , Adaptation, Physiological , Africa , Animals , Biomass , Carbon Dioxide/metabolism , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Ecosystem , Fossils , Hominidae/physiology , Humans , Poaceae/chemistry , Poaceae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL