Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 12: e17346, 2024.
Article in English | MEDLINE | ID: mdl-38737739

ABSTRACT

Background: Together with the intensification of dry seasons in Neotropical regions, increasing deforestation is expected to exacerbate species extinctions, something that could lead to dramatic shifts in multitrophic communities and ecosystem functions. Recent studies suggest that the effects of habitat loss are greater where precipitation has decreased. Yet, experimental studies of the pure and interactive effects of drought and deforestation at ecosystem level remain scarce. Methods: Here, we used rainshelters and transplantation from rainforest to open areas of natural microcosms (the aquatic ecosystem and microbial-faunal food web found within the rainwater-filled leaves of tank bromeliads) to emulate drought and deforestation in a full factorial experimental design. We analysed the pure and interactive effects of our treatments on functional community structure (including microorganisms, detritivore and predatory invertebrates), and on leaf litter decomposition in tank bromeliad ecosystems. Results: Drought or deforestation alone had a moderate impact on biomass at the various trophic level, but did not eliminate species. However, their interaction synergistically reduced the biomass of all invertebrate functional groups and bacteria. Predators were the most impacted trophic group as they were totally eliminated, while detritivore biomass was reduced by about 95%. Fungal biomass was either unaffected or boosted by our treatments. Decomposition was essentially driven by microbial activity, and did not change across treatments involving deforestation and/or drought. Conclusions: Our results suggest that highly resistant microorganisms such as fungi (plus a few detritivores) maintain key ecosystem functions in the face of drought and habitat change. We conclude that habitat destruction compounds the problems of climate change, that the impacts of the two phenomena on food webs are mutually reinforcing, and that the stability of ecosystem functions depends on the resistance of a core group of organisms. Assuming that taking global action is more challenging than taking local-regional actions, policy-makers should be encouraged to implement environmental action plans that will halt habitat destruction, to dampen any detrimental interactive effect with the impacts of global climate change.


Subject(s)
Conservation of Natural Resources , Droughts , Ecosystem , Animals , Bromeliaceae , Food Chain , Biomass , Rainforest , Invertebrates/physiology
2.
Sci Rep ; 12(1): 7513, 2022 05 07.
Article in English | MEDLINE | ID: mdl-35525878

ABSTRACT

Arboreal and flying frugivorous animals represent primary dispersers in the Neotropics. Studies suggest a possible compensation for the loss of large species by smaller ones with expanding rampant anthropogenic pressures and declining populations of larger frugivores. However, studies on seed dispersal by frugivores vertebrates generally focus on the diurnal, terrestrial, canopy, and flying species, with the nocturnal canopy ones being less studied. Setting camera traps high in the canopy of fruiting nutmeg trees revealed for the first time the high frequency of the kinkajou (Potos flavus, Schreber, 1774, Procyonidae), an overlooked nocturnal frugivore species (Order Carnivora) in the Guianas. The diversity of the fruit species consumed by the kinkajou calls for considering it as an important seed disperser. The overlap of the size of seeds dispersed by frugivores observed in nutmeg trees suggests that the small (2-5 kg) kinkajou may compensate for the loss of large (5-10 kg) frugivorous vertebrates in the canopy. Camera traps visualise how the kinkajou is adapted to forage in the nutmeg tree crown and grab the fruit. Such information is vital for conservation because compensation of seed dispersal by small frugivores is crucial in increasing anthropogenic stressors.


Subject(s)
Carnivora , Myristica , Seed Dispersal , Animals , Ecosystem , Feeding Behavior , Fruit , Seeds , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...