Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 439: 129519, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35882173

ABSTRACT

The remobilization of metals accumulated in contaminated soils poses a threat to humans and ecosystems in general. Tracing metal fractionation provides valuable information for understanding the remobilization processes in smelting areas. Based on the difference between the isotopic system of Cd and Zn, this work aimed to couple isotope data and their leachability to identify possible remobilization processes in several soil types and land uses. For soil samples, the δ66/64Zn values ranged from 0.12 ± 0.05‰ to 0.28 ± 0.05‰ in Avilés (Spain) and from - 0.09 ± 0.05‰ to - 0.21 ± 0.05‰ in Príbram (Czech Republic), and the δ114/110Cd ranged from - 0.13 ± 0.05‰ to 0.01 ± 0.04‰ in Avilés and from - 0.86 ± 0.27‰ to - 0.24 ± 0.05‰ in Príbram. The metal fractions extracted using chemical extractions were always enriched in heavier Cd isotopes whilst Zn isotope systematics exhibited light or heavy enrichment according to the soil type and land uses. Coupling Zn and Cd systematics provided a tool for deciphering the mechanisms behind the remobilization processes: leaching of the anthropogenic materials and/or metal redistribution within the soil components prior to remobilization.


Subject(s)
Soil Pollutants , Soil , Cadmium , Ecosystem , Environmental Monitoring , Humans , Isotopes/analysis , Metals , Soil Pollutants/analysis , Zinc/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...