Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Plant ; 175(6): e14100, 2023.
Article in English | MEDLINE | ID: mdl-38148250

ABSTRACT

High soil salinity is a global problem in agriculture that directly affects seed germination and the development of the seedlings sown deep in the soil. To study how salinity affected plastid ultrastructure, leaf segments of 11-day-old light- and dark-grown (etiolated) wheat (Triticum aestivum L. cv. Mv Béres) seedlings were floated on Hoagland solution, 600 mM KCl:NaCl (1:1) salt or isosmotic polyethylene glycol solution for 4 h in the dark. Light-grown seedlings were also treated in the light. The same treatments were also performed on etio-chloroplasts of etiolated seedlings greened for different time periods. Salt stress induced slight to strong changes in the relative chlorophyll content, photosynthetic activity, and organization of thylakoid complexes. Measurements of malondialdehyde contents and high-temperature thermoluminescence indicated significantly increased oxidative stress and lipid peroxidation under salt treatment, except for light-grown leaves treated in the dark. In chloroplasts of leaf segments treated in the light, slight shrinkage of grana (determined by transmission electron microscopy and small-angle neutron scattering) was observed, while a swelling of the (pro)thylakoid lumen was observed in etioplasts. Salt-induced swelling disappeared after the onset of photosynthesis after 4 h of greening. Osmotic stress caused no significant alterations in plastid structure and only mild changes in their activities, indicating that the swelling of the (pro)thylakoid lumen and the physiological effects of salinity are rather associated with the ionic component of salt stress. Our data indicate that etioplasts of dark-germinated wheat seedlings are the most sensitive to salt stress, especially at the early stages of their greening.


Subject(s)
Chloroplasts , Triticum , Chlorophyll , Seedlings , Salt Stress , Soil , Salinity
2.
Planta ; 258(5): 102, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37861810

ABSTRACT

MAIN CONCLUSION: Greening was partially (in 300 mM NaCl, CaCl2, 600 mM KNO3 or KCl) or fully inhibited (in 600 mM NaCl, NaNO3 or NaCl:KCl) by the ionic and not the osmotic component of salinity. Although high soil salinity is an increasing global problem, not much is known about how direct exposure to salinity affects etiolated leaves of seedlings germinating in the soil and then reaching the surface. We investigated the effect of various salt treatments on the greening process of leaves in 8- to 11-day-old etiolated wheat (Triticum aestivum L. Mv. Béres) seedlings. Etiolated leaf segments pre-treated on different salt (600 mM NaCl:KCl 1:1, 600 mM NaCl, 600 mM KCl, 600 mM NaNO3, 600 mM KNO3, 300 mM KCl, 300 mM NaCl or 300 mM CaCl2) or isosmotic polyethylene glycol 6000 (PEG) solutions for 1.5 h in the dark and then greened for 16 h on the same solutions were studied. Leaf segments greened on PEG (osmotic stress) or on 300 mM KCl had similar chloroplasts compared to control samples greened on Hoagland solution. Slightly slower development of chloroplast structure and function (photosynthetic activity) was observed in segments greened on 300 mM NaCl or CaCl2, 600 mM KNO3 or KCl. However, etioplast-to-chloroplast transformation and chlorophyll accumulation were fully inhibited and peculiar prothylakoid swelling occurred in segments greened on 600 mM NaCl, NaNO3 or NaCl:KCl (1:1) solutions. The data indicate that not the high osmolarity of the used salt solution, but its ions, especially Na+, had the strongest negative impact on these processes.


Subject(s)
Sodium Chloride , Triticum , Sodium Chloride/pharmacology , Salinity , Calcium Chloride/pharmacology , Seedlings/physiology , Plant Leaves/physiology , Soil , Osmotic Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...