Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 575(7784): 622-627, 2019 11.
Article in English | MEDLINE | ID: mdl-31634901

ABSTRACT

The strong-coupling regime of cavity quantum electrodynamics (QED) represents the light-matter interaction at the fully quantum level. Adding a single photon shifts the resonance frequencies-a profound nonlinearity. Cavity QED is a test bed for quantum optics1-3 and the basis of photon-photon and atom-atom entangling gates4,5. At microwave frequencies, cavity QED has had a transformative effect6, enabling qubit readout and qubit couplings in superconducting circuits. At optical frequencies, the gates are potentially much faster; the photons can propagate over long distances and can be easily detected. Following pioneering work on single atoms1-3,7, solid-state implementations using semiconductor quantum dots are emerging8-15. However, miniaturizing semiconductor cavities without introducing charge noise and scattering losses remains a challenge. Here we present a gated, ultralow-loss, frequency-tunable microcavity device. The gates allow both the quantum dot charge and its resonance frequency to be controlled electrically. Furthermore, cavity feeding10,11,13-17, the observation of the bare-cavity mode even at the quantum dot-cavity resonance, is eliminated. Even inside the microcavity, the quantum dot has a linewidth close to the radiative limit. In addition to a very pronounced avoided crossing in the spectral domain, we observe a clear coherent exchange of a single energy quantum between the 'atom' (the quantum dot) and the cavity in the time domain (vacuum Rabi oscillations), whereas decoherence arises mainly via the atom and photon loss channels. This coherence is exploited to probe the transitions between the singly and doubly excited photon-atom system using photon-statistics spectroscopy18. The work establishes a route to the development of semiconductor-based quantum photonics, such as single-photon sources and photon-photon gates.

2.
Nat Nanotechnol ; 13(5): 398-403, 2018 05.
Article in English | MEDLINE | ID: mdl-29556004

ABSTRACT

The spin of an electron is a promising memory state and qubit. Connecting spin states that are spatially far apart will enable quantum nodes and quantum networks based on the electron spin. Towards this goal, an integrated spin-photon interface would be a major leap forward as it combines the memory capability of a single spin with the efficient transfer of information by photons. Here, we demonstrate such an efficient and optically programmable interface between the spin of an electron in a quantum dot and photons in a nanophotonic waveguide. The spin can be deterministically prepared in the ground state with a fidelity of up to 96%. Subsequently, the system is used to implement a single-spin photonic switch, in which the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may enable on-chip photon-photon gates, single-photon transistors and the efficient generation of a photonic cluster state.

3.
Nano Lett ; 18(3): 1801-1806, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29494160

ABSTRACT

Establishing a highly efficient photon-emitter interface where the intrinsic linewidth broadening is limited solely by spontaneous emission is a key step in quantum optics. It opens a pathway to coherent light-matter interaction for, e.g., the generation of highly indistinguishable photons, few-photon optical nonlinearities, and photon-emitter quantum gates. However, residual broadening mechanisms are ubiquitous and need to be combated. For solid-state emitters charge and nuclear spin noise are of importance, and the influence of photonic nanostructures on the broadening has not been clarified. We present near-lifetime-limited linewidths for quantum dots embedded in nanophotonic waveguides through a resonant transmission experiment. It is found that the scattering of single photons from the quantum dot can be obtained with an extinction of 66 ± 4%, which is limited by the coupling of the quantum dot to the nanostructure rather than the linewidth broadening. This is obtained by embedding the quantum dot in an electrically contacted nanophotonic membrane. A clear pathway to obtaining even larger single-photon extinction is laid out; i.e., the approach enables a fully deterministic and coherent photon-emitter interface in the solid state that is operated at optical frequencies.

4.
Phys Rev Lett ; 116(23): 234301, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27341236

ABSTRACT

We propose a scheme that enables the deterministic generation of single phonons at gigahertz frequencies triggered by single photons in the near infrared. This process is mediated by a quantum dot embedded on chip in an optomechanical circuit, which allows for the simultaneous control of the relevant photonic and phononic frequencies. We devise new optomechanical circuit elements that constitute the necessary building blocks for the proposed scheme and are readily implementable within the current state-of-the-art of nanofabrication. This will open new avenues for implementing quantum functionalities based on phonons as an on-chip quantum bus.

5.
Nat Nanotechnol ; 10(9): 775-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26214251

ABSTRACT

Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

6.
Phys Rev Lett ; 109(25): 253902, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23368466

ABSTRACT

Complex dielectric media often appear opaque because light traveling through them is scattered multiple times. Although the light scattering is a random process, different paths through the medium can be correlated encoding information about the medium. Here, we present spectroscopic measurements of nonuniversal intensity correlations that emerge when embedding quantum emitters inside a disordered photonic crystal that is found to Anderson-localize light. The emitters probe in situ the microscopic details of the medium, and imprint such near-field properties onto the far-field correlations. Our findings provide new ways of enhancing light-matter interaction for quantum electrodynamics and energy harvesting, and may find applications in subwavelength diffuse-wave spectroscopy for biophotonics.

SELECTION OF CITATIONS
SEARCH DETAIL
...