Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 81(2): 255-267.e6, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33290745

ABSTRACT

Gene activation requires the cooperative activity of multiple transcription factors at cis-regulatory elements (CREs). Yet, most transcription factors have short residence time, questioning the requirement of their physical co-occupancy on DNA to achieve cooperativity. Here, we present a DNA footprinting method that detects individual molecular interactions of transcription factors and nucleosomes with DNA in vivo. We apply this strategy to quantify the simultaneous binding of multiple transcription factors on single DNA molecules at mouse CREs. Analysis of the binary occupancy patterns at thousands of motif combinations reveals that high DNA co-occupancy occurs for most types of transcription factors, in the absence of direct physical interaction, at sites of competition with nucleosomes. Perturbation of pairwise interactions demonstrates the function of molecular co-occupancy in binding cooperativity. Our results reveal the interactions regulating CREs at molecular resolution and identify DNA co-occupancy as a widespread cooperativity mechanism used by transcription factors to remodel chromatin.


Subject(s)
DNA Footprinting/methods , DNA/genetics , Nucleosomes/chemistry , Regulatory Elements, Transcriptional , Transcription Factors/genetics , Animals , Binding Sites , DNA/chemistry , DNA/metabolism , Male , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Nucleosomes/metabolism , Protein Binding , Transcription Factors/chemistry , Transcription Factors/metabolism , Transcription, Genetic
2.
Genome Biol ; 20(1): 155, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31387612

ABSTRACT

We describe a highly sensitive, quantitative, and inexpensive technique for targeted sequencing of transcript cohorts or genomic regions from thousands of bulk samples or single cells in parallel. Multiplexing is based on a simple method that produces extensive matrices of diverse DNA barcodes attached to invariant primer sets, which are all pre-selected and optimized in silico. By applying the matrices in a novel workflow named Barcode Assembly foR Targeted Sequencing (BART-Seq), we analyze developmental states of thousands of single human pluripotent stem cells, either in different maintenance media or upon Wnt/ß-catenin pathway activation, which identifies the mechanisms of differentiation induction. Moreover, we apply BART-Seq to the genetic screening of breast cancer patients and identify BRCA mutations with very high precision. The processing of thousands of samples and dynamic range measurements that outperform global transcriptomics techniques makes BART-Seq first targeted sequencing technique suitable for numerous research applications.


Subject(s)
Gene Expression Profiling/methods , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Breast Neoplasms/genetics , Cost-Benefit Analysis , Embryonic Stem Cells/metabolism , Female , Gene Expression Profiling/economics , Genomics/economics , High-Throughput Nucleotide Sequencing/economics , Humans , Pluripotent Stem Cells/metabolism , Sequence Analysis, RNA/economics , Single-Cell Analysis/economics , Single-Cell Analysis/methods , Wnt Signaling Pathway , Workflow
3.
J Extracell Vesicles ; 6(1): 1378056, 2017.
Article in English | MEDLINE | ID: mdl-29184623

ABSTRACT

Extracellular vesicles (EVs) are membrane particles secreted from cells into all body fluids. Several EV populations exist differing in size and cellular origin. Using differential centrifugation EVs pelleting at 14,000 g ("microvesicles" (MV)) and 100,000 g ("exosomes") are distinguishable by protein markers. Neutral sphingomyelinase (nSMase) inhibition has been shown to inhibit exosome release from cells and has since been used to study their functional implications. How nSMases (also known as SMPD2 and SMPD3) affect the basal secretion of MVs is unclear. Here we investigated how SMPD2/3 impact both EV populations. SMPD2/3 inhibition by GW4869 or RNAi decreases secretion of exosomes, but also increases secretion of MVs from the plasma membrane. Both populations differ significantly in metabolite composition and Wnt proteins are specifically loaded onto MVs under these conditions. Taken together, our data reveal a novel regulatory function of SMPD2/3 in vesicle budding from the plasma membrane and clearly suggest that - despite the different vesicle biogenesis - the routes of vesicular export are adaptable.

SELECTION OF CITATIONS
SEARCH DETAIL
...