Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 111(9): 1629-1639, 2023 09.
Article in English | MEDLINE | ID: mdl-37166150

ABSTRACT

Tissue engineering applications are widely used to repair and regenerate damaged tissues and organs. A scaffold, which is an important component in tissue engineering, provides a 3D environment for cells. In this study, the usability of PF components for the production of an ideal scaffold was investigated. For this aim, pericardial fluid (PF) was harvested from the bovine heart, then its structure and components were characterized. The results of Raman spectroscopy analysis, histological staining, and scanning electron microscopy (SEM) shows that the pericardial fluid contains collagen type I and IV, elastin, fibrin, and glycosaminoglycan (GAG), which are native extracellular matrix (ECM) components. The results demonstrated that (i) PF contains native ECM proteins and GAG such as collagen types I, III, and IV, elastin, and fibrin. (ii) The PF is highly similar to the native ECM structure. (iii) PF can significantly contribute to many tissue engineering studies as a native ECM material to increase the biocompatibility of biomaterials and to several in vitro/in vivo cell culture studies. (iv) PF containing multiple ECM molecules, can be used alone or together with hyaluronic acid, poly(ethylene glycol) (PEG), alginate, chitosan, matrigel, and gelatin methacryloyl (GelMA) materials in bioprinting systems for eliminating the disadvantages of these materials.


Subject(s)
Elastin , Tissue Engineering , Animals , Cattle , Tissue Engineering/methods , Elastin/metabolism , Pericardial Fluid/metabolism , Extracellular Matrix/chemistry , Biocompatible Materials/chemistry , Glycosaminoglycans/metabolism , Tissue Scaffolds/chemistry
2.
Biomed Mater Eng ; 32(2): 101-113, 2021.
Article in English | MEDLINE | ID: mdl-33682690

ABSTRACT

BACKGROUND: The heart is surrounded by a membrane called pericardium or pericardial cavity. OBJECTIVE: In this study, we investigated the pericardial fluid (PF) for coating polycaprolactone (PCL) scaffolds. PFS, which is a PF component, was used for the coating material. In addition to using PFS for surface coating, MED and fetal bovine serum (FBS) were also used for comparison. METHODS: Pericardial fluid cells (PFSc) isolated from PF were cultured on coated PCL scaffolds for 1, 3, and 5 days. Cell viability was determined using 3-(4, 5-di-methylthiazol- 2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. RESULTS: The MTT assay results showed that the viability of cells on PCL scaffold coated with PFS increased over time (P < 0.005), and cell viability was significantly different between PCL scaffolds coated with PFS and non-coated PCL scaffolds. However, cell viability was significantly higher in the PCL scaffolds coated with PFS than non-coated and coated with FBS, MED, and PCL scaffolds. Scanning electron microscopy (SEM) microscopy images and MTT assay indicated that PFSc are attached, proliferated, and spread on PCL scaffolds, especially on PCL scaffolds coated with PFS. CONCLUSIONS: These results suggest that PFS is a biocompatible material for surface modification of PCL scaffolds, which can be used as a suitable material for tissue engineering applications.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Biocompatible Materials , Cell Survival , Pericardial Fluid , Polyesters
SELECTION OF CITATIONS
SEARCH DETAIL
...