Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Cogn Neurosci ; 36(3): 551-566, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38165735

ABSTRACT

Deep convolutional neural networks (DCNNs) are able to partially predict brain activity during object categorization tasks, but factors contributing to this predictive power are not fully understood. Our study aimed to investigate the factors contributing to the predictive power of DCNNs in object categorization tasks. We compared the activity of four DCNN architectures with EEG recordings obtained from 62 human participants during an object categorization task. Previous physiological studies on object categorization have highlighted the importance of figure-ground segregation-the ability to distinguish objects from their backgrounds. Therefore, we investigated whether figure-ground segregation could explain the predictive power of DCNNs. Using a stimulus set consisting of identical target objects embedded in different backgrounds, we examined the influence of object background versus object category within both EEG and DCNN activity. Crucially, the recombination of naturalistic objects and experimentally controlled backgrounds creates a challenging and naturalistic task, while retaining experimental control. Our results showed that early EEG activity (< 100 msec) and early DCNN layers represent object background rather than object category. We also found that the ability of DCNNs to predict EEG activity is primarily influenced by how both systems process object backgrounds, rather than object categories. We demonstrated the role of figure-ground segregation as a potential prerequisite for recognition of object features, by contrasting the activations of trained and untrained (i.e., random weights) DCNNs. These findings suggest that both human visual cortex and DCNNs prioritize the segregation of object backgrounds and target objects to perform object categorization. Altogether, our study provides new insights into the mechanisms underlying object categorization as we demonstrated that both human visual cortex and DCNNs care deeply about object background.


Subject(s)
Neural Networks, Computer , Visual Cortex , Humans , Visual Cortex/physiology , Recognition, Psychology
2.
PLoS Comput Biol ; 19(6): e1011169, 2023 06.
Article in English | MEDLINE | ID: mdl-37294830

ABSTRACT

Humans can quickly recognize objects in a dynamically changing world. This ability is showcased by the fact that observers succeed at recognizing objects in rapidly changing image sequences, at up to 13 ms/image. To date, the mechanisms that govern dynamic object recognition remain poorly understood. Here, we developed deep learning models for dynamic recognition and compared different computational mechanisms, contrasting feedforward and recurrent, single-image and sequential processing as well as different forms of adaptation. We found that only models that integrate images sequentially via lateral recurrence mirrored human performance (N = 36) and were predictive of trial-by-trial responses across image durations (13-80 ms/image). Importantly, models with sequential lateral-recurrent integration also captured how human performance changes as a function of image presentation durations, with models processing images for a few time steps capturing human object recognition at shorter presentation durations and models processing images for more time steps capturing human object recognition at longer presentation durations. Furthermore, augmenting such a recurrent model with adaptation markedly improved dynamic recognition performance and accelerated its representational dynamics, thereby predicting human trial-by-trial responses using fewer processing resources. Together, these findings provide new insights into the mechanisms rendering object recognition so fast and effective in a dynamic visual world.


Subject(s)
Pattern Recognition, Visual , Visual Perception , Humans , Pattern Recognition, Visual/physiology , Visual Perception/physiology , Neural Networks, Computer , Recognition, Psychology/physiology , Acclimatization
3.
PLoS Comput Biol ; 18(4): e1009976, 2022 04.
Article in English | MEDLINE | ID: mdl-35377876

ABSTRACT

Arousal levels strongly affect task performance. Yet, what arousal level is optimal for a task depends on its difficulty. Easy task performance peaks at higher arousal levels, whereas performance on difficult tasks displays an inverted U-shape relationship with arousal, peaking at medium arousal levels, an observation first made by Yerkes and Dodson in 1908. It is commonly proposed that the noradrenergic locus coeruleus system regulates these effects on performance through a widespread release of noradrenaline resulting in changes of cortical gain. This account, however, does not explain why performance decays with high arousal levels only in difficult, but not in simple tasks. Here, we present a mechanistic model that revisits the Yerkes-Dodson effect from a sensory perspective: a deep convolutional neural network augmented with a global gain mechanism reproduced the same interaction between arousal state and task difficulty in its performance. Investigating this model revealed that global gain states differentially modulated sensory information encoding across the processing hierarchy, which explained their differential effects on performance on simple versus difficult tasks. These findings offer a novel hierarchical sensory processing account of how, and why, arousal state affects task performance.


Subject(s)
Arousal , Locus Coeruleus , Arousal/physiology , Perception , Sensation , Task Performance and Analysis
4.
J Cogn Neurosci ; 34(4): 655-674, 2022 03 05.
Article in English | MEDLINE | ID: mdl-35061029

ABSTRACT

Spatial attention enhances sensory processing of goal-relevant information and improves perceptual sensitivity. Yet, the specific neural mechanisms underlying the effects of spatial attention on performance are still contested. Here, we examine different attention mechanisms in spiking deep convolutional neural networks. We directly contrast effects of precision (internal noise suppression) and two different gain modulation mechanisms on performance on a visual search task with complex real-world images. Unlike standard artificial neurons, biological neurons have saturating activation functions, permitting implementation of attentional gain as gain on a neuron's input or on its outgoing connection. We show that modulating the connection is most effective in selectively enhancing information processing by redistributing spiking activity and by introducing additional task-relevant information, as shown by representational similarity analyses. Precision only produced minor attentional effects in performance. Our results, which mirror empirical findings, show that it is possible to adjudicate between attention mechanisms using more biologically realistic models and natural stimuli.


Subject(s)
Neural Networks, Computer , Neurons , Humans , Neurons/physiology
5.
Proc Natl Acad Sci U S A ; 116(43): 21854-21863, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31591217

ABSTRACT

The human visual system is an intricate network of brain regions that enables us to recognize the world around us. Despite its abundant lateral and feedback connections, object processing is commonly viewed and studied as a feedforward process. Here, we measure and model the rapid representational dynamics across multiple stages of the human ventral stream using time-resolved brain imaging and deep learning. We observe substantial representational transformations during the first 300 ms of processing within and across ventral-stream regions. Categorical divisions emerge in sequence, cascading forward and in reverse across regions, and Granger causality analysis suggests bidirectional information flow between regions. Finally, recurrent deep neural network models clearly outperform parameter-matched feedforward models in terms of their ability to capture the multiregion cortical dynamics. Targeted virtual cooling experiments on the recurrent deep network models further substantiate the importance of their lateral and top-down connections. These results establish that recurrent models are required to understand information processing in the human ventral stream.


Subject(s)
Models, Neurological , Visual Perception/physiology , Adult , Deep Learning , Feedback, Sensory , Female , Humans , Magnetoencephalography , Nerve Net , Visual Pathways
6.
Front Neurosci ; 12: 433, 2018.
Article in English | MEDLINE | ID: mdl-30018530

ABSTRACT

In a previous study using transcranial alternating current stimulation (tACS), we found preliminary evidence that phase coherence in the alpha band (8-12 Hz) within the fronto-parietal network may critically support top-down control of spatial attention (van Schouwenburg et al., 2017). Specifically, synchronous alpha-band stimulation over the right frontal and parietal cortex (0° relative phase) was associated with changes in performance and fronto-parietal coherence during a spatial attention task as compared to sham stimulation. In the current study, we firstly aimed to replicate these findings with synchronous tACS. Second, we extended our previous protocol by adding a second tACS condition in which the right frontal and parietal cortex were stimulated in a desynchronous fashion (180° relative phase), to test the specificity of the changes observed in our previous study. Participants (n = 23) were tested in three different sessions in which they received either synchronous, desynchronous, or sham stimulation over the right frontal and parietal cortex. In contrast to our previous study, we found no spatially selective effects of stimulation on behavior or coherence in either stimulation protocol compared to sham. We highlight some of the differences in study design that may have contributed to this discrepancy in findings and more generally may determine the effectiveness of tACS.

SELECTION OF CITATIONS
SEARCH DETAIL
...