Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(10)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37893053

ABSTRACT

Human skin is particularly vulnerable to external damaging influences such as irradiation, extreme temperatures, chemical trauma, and certain systemic diseases, which reduce the skin's capacity for regeneration and restoration and can possibly lead to large-scale skin defects. To restore skin continuity in severe cases, surgical interventions such as the transplantation of autologous tissue are needed. Nevertheless, the coverage of larger skin defects caused by severe third-grade burns or extensive irradiation therapy is limited due to the depletion of uninjured autologous tissue. In such cases, many of the patient's epidermal cells can become available using biofabricated skin grafts, thereby restoring the skin's vital functions. Given the limited availability of autologous skin grafts for restoring integrity in large-scale defects, using bioprinted constructs as skin graft substitutes could offer an encouraging therapeutic alternative to conventional therapies for large-scale wounds, such as the transplantation of autologous tissue. Using layer-by-layer aggregation or volumetric bioprinting, inkjet bioprinting, laser-assisted bioprinting, or extrusion-based bioprinting, skin cells are deposited in a desired pattern. The resulting constructs may be used as skin graft substitutes to accelerate wound healing and reconstitute the physiological functions of the skin. In this review, we aimed to elucidate the current state of bioprinting within the context of skin tissue engineering and introduce and discuss different bioprinting techniques, possible approaches and materials, commonly used cell types, and strategies for graft vascularization for the production of bioprinted constructs for use as skin graft substitutes.

2.
J Clin Med ; 11(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36078961

ABSTRACT

The treatment of large-scale skin wounds remains a therapeutic challenge. In most cases there is not enough autologous material available for full coverage. Cultured epithelial autografts are efficient in restoring the lost epidermal cover; however, they have some disadvantages, such as difficult application and protracted cell cultivation periods. Transplanting a sprayed keratinocyte suspension in fibrin sealant as biological carrier is an option to overcome those disadvantages. Here, we studied different seeding techniques regarding their applicability and advantages on cell survival, attachment, and outgrowth in vitro and thereby improve the cell transfer to the wound bed. Human primary keratinocytes were suspended in a fibrin sealant. WST-8 assay was used to evaluate the vitality for 7 days. Furthermore, the cells were labeled with CellTracker™ CM-Di-I and stained with a life/dead staining. Cell morphology, shape, and distribution were microscopically analyzed. There was a significant increase in vitality while cultivating the cells in fibrin. Sprayed cells were considerably more homogenously distributed. Sprayed cells reached the confluent state earlier than dripped cells. There was no difference in the vitality and morphology in both groups over the observation period. These findings indicate that the sprayed keratinocytes are superior to the application of the cells as droplets. The sprayed application may offer a promising therapeutic option in the treatment of large chronic wounds.

3.
Cancers (Basel) ; 14(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35158856

ABSTRACT

Ionizing radiation has become an integral part of modern cancer therapy regimens. Various side effects, such as radiation dermatitis, affect patients in acute and chronic forms and decrease therapy compliance significantly. In this study, primary keratinocytes were irradiated in a 2-dimensional (2D) culture as well as on a 3-dimensional (3D) collagen-elastin matrix with doses of 2 and 5 Gy. The effect of different concentrations of IGF-I, KGF, platelet lysate (PL), high and low molecular weight hyaluronic acid (H-HA, L-HA), and adipose-derived stem cell (ADSC) conditioned medium was analyzed in respect to cell viability (WST-8), wound closure (migration), and the gene expression (quantitative real-time PCR) of 2D cultures. The 3D culture was evaluated by WST-8. A mixture of H-HA and L-HA, as well as IGF-I, could significantly stimulate the keratinocyte viability and migration which were severely reduced by irradiation. The MKI67and IL6 gene expression of irradiated keratinocytes was significantly higher after H-HA/L-HA treatment. The stimulating effects of H-HA/L-HA and IGF-I were able to be confirmed in 3D culture. A positive influence on cell viability, migration, and gene expression was achieved after the treatment with H-L-HA and IGF-I. These results open the possibility of a novel therapeutic method for both the prevention and the treatment of radiation dermatitis.

SELECTION OF CITATIONS
SEARCH DETAIL
...