Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 1877, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29382914

ABSTRACT

Nitrous acid (HONO) is an important precursor of the hydroxyl radical (OH), the atmosphere´s primary oxidant. An unknown strong daytime source of HONO is required to explain measurements in ambient air. Emissions from soils are one of the potential sources. Ammonia-oxidizing bacteria (AOB) have been identified as possible producers of these HONO soil emissions. However, the mechanisms for production and release of HONO in soils are not fully understood. In this study, we used a dynamic soil-chamber system to provide direct evidence that gaseous emissions from nitrifying pure cultures contain hydroxylamine (NH2OH), which is subsequently converted to HONO in a heterogeneous reaction with water vapor on glass bead surfaces. In addition to different AOB species, we found release of HONO also in ammonia-oxidizing archaea (AOA), suggesting that these globally abundant microbes may also contribute to the formation of atmospheric HONO and consequently OH. Since biogenic NH2OH is formed by diverse organisms, such as AOB, AOA, methane-oxidizing bacteria, heterotrophic nitrifiers, and fungi, we argue that HONO emission from soil is not restricted to the nitrifying bacteria, but is also promoted by nitrifying members of the domains Archaea and Eukarya.


Subject(s)
Bacteria/metabolism , Hydroxylamine/metabolism , Nitrification/physiology , Ammonia/metabolism , Archaea/metabolism , Atmosphere , Gases/metabolism , Hydroxyl Radical/metabolism , Nitrous Acid/metabolism , Oxidation-Reduction , Soil , Soil Microbiology
2.
Science ; 341(6151): 1233-5, 2013 Sep 13.
Article in English | MEDLINE | ID: mdl-24031015

ABSTRACT

Abiotic release of nitrous acid (HONO) in equilibrium with soil nitrite (NO2(-)) was suggested as an important contributor to the missing source of atmospheric HONO and hydroxyl radicals (OH). The role of total soil-derived HONO in the biogeochemical and atmospheric nitrogen cycles, however, has remained unknown. In laboratory experiments, we found that for nonacidic soils from arid and arable areas, reactive nitrogen emitted as HONO is comparable with emissions of nitric oxide (NO). We show that ammonia-oxidizing bacteria can directly release HONO in quantities larger than expected from the acid-base and Henry's law equilibria of the aqueous phase in soil. This component of the nitrogen cycle constitutes an additional loss term for fixed nitrogen in soils and a source for reactive nitrogen in the atmosphere.


Subject(s)
Nitrogen Fixation , Nitrogen/metabolism , Nitrosomonas europaea/metabolism , Nitrous Acid/metabolism , Reactive Nitrogen Species/metabolism , Soil Microbiology , Ammonia/metabolism , Atmosphere/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...