Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Reprod Biomed Online ; 48(1): 103600, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039562

ABSTRACT

The healthcare industry is a major contributor to greenhouse gas emissions. Assisted reproductive technology is part of the larger healthcare sector, with its own heavy carbon footprint. The social, economic and environmental costs of this collective carbon footprint are becoming clearer, as is the impact on human reproductive health. Alpha Scientists in Reproductive Medicine and the International IVF Initiative collaborated to seek and formulate practical recommendations for sustainability in IVF laboratories. An international panel of experts, enthusiasts and professionals in reproductive medicine, environmental science, architecture, biorepository and law convened to discuss the topics of importance to sustainability. Recommendations were issued on how to build a culture of sustainability in the workplace, implement green design and building, use life cycle analysis to determine the environmental impact, manage cryostorage more sustainably, and understand and manage laboratory waste with prevention as a primary goal. The panel explored whether the industry supporting IVF is sustainable. An example is provided to illustrate the application of green principles to an IVF laboratory through a certification programme. The UK legislative landscape surrounding sustainability is also discussed and a few recommendations on 'Green Conferencing' are offered.


Subject(s)
Carbon Footprint , Laboratories , Humans , Reproductive Techniques, Assisted , Fertilization in Vitro
2.
Sci Total Environ ; 676: 222-230, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31048154

ABSTRACT

The presence of active pharmaceutical ingredients (APIs) in the environment is of growing concern and effluents from wastewater treatment works (WwTWs) are one of the major sources. This research combines the outputs of a multimillion pound UK program of work to evaluate the fate of APIs in the wastewater treatment process. A combination of analysis of measured data and modelling has been applied to 18 APIs, representing a wide range of medicinal application and physico-chemical characteristics. Some isomers (for atorvastatin) and metabolites (for sertraline, carbamazepine and erythromycin) were also included. High variability was observed between removal rates for individual APIs between WwTW, which after statistical analysis could not be explained by the nominal WwTW process (e.g. activated sludge or trickling filter). Nor was there a clear relationship between API removal and physico-chemical parameters such as pKa, charge or log Kow. A publically available sewage process model, SimpleTreat 4.0 which has been rigorously validated and is now being used for exposure assessment with REACH legislation for organic chemicals and within the Biocidal Products Regulation by the European Medicines Agency for APIs, was used to estimate removal rates with which to compare with measured data. SimpleTreat provided estimates of removal rates within ±30% of observed values for the majority of the APIs measured, with the use of readily available WwTW specific parameters such as flow, total suspended solids and BOD data. The data and correlations provided in this study provide support for any future considerations regarding the management of API discharge to the aquatic environment.


Subject(s)
Pharmaceutical Preparations/analysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , Environmental Monitoring , Wastewater/chemistry
3.
Sci Total Environ ; 613-614: 538-547, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-28926808

ABSTRACT

This work reports on the variation in wastewater treatment works (WwTW) influent concentrations of a wide variety of active pharmaceutical ingredients (APIs), their removal efficiency, effluent concentrations and potential risks to the aquatic environment. The research is based on data generated from two large UK-wide WwTW monitoring programmes. Taking account of removal of parent compound from the aqueous phase during treatment in combination with estimates of dilution available it is possible to prioritise the APIs of greatest risk of exceeding estimates of predicted no effect concentrations (PNEC) in receiving waters for all WwTW in the UK. The majority of substances studied were removed to a high degree, although with significant variation, both within and between WwTW. Poorer removal (between influent and effluent) was observed for ethinyloestradiol, diclofenac, propranolol, the macrolide antibiotics, fluoxetine, tamoxifen and carbamazepine. All except the last two of these substances were present in effluents at concentrations higher than their respective estimated PNEC (based on measurement of effluents from 45 WwTW on 20 occasions). Based on available dilution data as many as 890 WwTW in the UK (approximately 13% of all WwTW) may cause exceedances of estimated riverine PNECs after mixing of their effluents with receiving waters. The overall degree of risk is driven by the toxicity value selected, which in itself is controlled by the availability of reliable and relevant ecotoxicological data and consequently the safety factors applied. The dataset and discussion, provides information to assist in the future management of these types of chemicals.


Subject(s)
Environmental Monitoring , Pharmaceutical Preparations/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Risk Assessment , United Kingdom
4.
Drug Saf ; 36(7): 533-46, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23620169

ABSTRACT

Ecopharmacovigilance (EPV) is a developing science and it is currently very unclear what it might mean in practice. We have performed a comparison between pharmacovigilance (PV) and EPV and have identified that there are similarities, but also some important differences that must be considered before any practical implementation of EPV. The biggest difference and greatest challenge concerns signal detection in the environment and the difficulty of identifying cause and effect. We reflect on the dramatic vulture decline in Asia, which was caused by the veterinary use of diclofenac, versus the relative difficulty in identifying the specific causes of intersex fish in European rivers. We explore what EPV might mean in practice and have identified that there are some practical measures that can be taken to assess environmental risks across product life cycle, particularly after launch of a new drug, to ensure that our risk assessments and scientific understanding of pharmaceuticals in the environment remain scientifically and ecologically relevant. These include: Tracking environmental risks after launch of the product, via literature monitoring for emerging data on exposure and effects Using Environmental Risk Management Plans (ERMPs) as a centralized resource to assess and manage the risks of a drug throughout its life cycle Further research, testing or monitoring in the environment when a risk is identified Keeping a global EPV perspective Increasing transparency and availability of environmental data for medicinal products. These measures will help to ensure that any significant environmental issues associated with pharmaceuticals in the environment (PIE) are identified in a timely way, and can be managed appropriately.


Subject(s)
Environmental Monitoring/methods , Pharmacovigilance , Public Health/methods , Animals , Asia , Diclofenac/adverse effects , Humans , Life Cycle Stages/drug effects , Risk Assessment
5.
Bioorg Med Chem Lett ; 22(21): 6756-61, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23013933

ABSTRACT

11ß-HSD1 is increasingly seen as an attractive target for the treatment of type II diabetes and other elements of the metabolic syndrome. In this program of work we describe how a series of neutral 2-thioalkyl-pyridine 11ß-HSD1 inhibitors were optimized in terms of their pharmacokinetic properties to give compounds with excellent bioavailability in both rat and dog through a core change to pyrimidine. A potential reactive metabolite issue with 4-thioalkyl-pyrimidines was circumvented by a switch from sulfur to carbon substitution.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Enzyme Inhibitors/pharmacokinetics , Pyridines/chemistry , Sulfhydryl Compounds/chemistry , Animals , Dogs , Enzyme Inhibitors/chemistry , Inhibitory Concentration 50 , Molecular Structure , Pyridines/pharmacokinetics , Rats , Sulfhydryl Compounds/pharmacokinetics
6.
J Med Chem ; 55(11): 5361-79, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22545772

ABSTRACT

G protein coupled receptor 119 (GPR119) is viewed as an attractive target for the treatment of type 2 diabetes and other elements of the metabolic syndrome. During a program toward discovering agonists of GPR119, we herein describe optimization of an initial lead compound, 2, into a development candidate, 42. A key challenge in this program of work was the insolubility of the lead compound. Small-molecule crystallography was utilized to understand the intermolecular interactions in the solid state and resulted in a switch from an aryl sulphone to a 3-cyanopyridyl motif. The compound was shown to be effective in wild-type but not knockout animals, confirming that the biological effects were due to GPR119 agonism.


Subject(s)
Oxadiazoles/chemical synthesis , Pyridines/chemical synthesis , Receptors, G-Protein-Coupled/agonists , Animals , Biological Availability , Carbamates/chemical synthesis , Carbamates/chemistry , Carbamates/pharmacology , Crystallography, X-Ray , Dogs , High-Throughput Screening Assays , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Molecular , Molecular Structure , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Piperidines/chemical synthesis , Piperidines/chemistry , Piperidines/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Rats , Rats, Wistar , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Small Molecule Libraries , Solubility , Stereoisomerism , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/chemistry , Sulfones/pharmacology
7.
Bioorg Med Chem ; 19(10): 3039-53, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21515056

ABSTRACT

Inhibition of acetyl-CoA carboxylases has the potential for modulating long chain fatty acid biosynthesis and mitochondrial fatty acid oxidation. Hybridization of weak inhibitors of ACC2 provided a novel, moderately potent but lipophilic series. Optimization led to compounds 33 and 37, which exhibit potent inhibition of human ACC2, 10-fold selectivity over inhibition of human ACC1, good physical and in vitro ADME properties and good bioavailability. X-ray crystallography has shown this series binding in the CT-domain of ACC2 and revealed two key hydrogen bonding interactions. Both 33 and 37 lower levels of hepatic malonyl-CoA in vivo in obese Zucker rats.


Subject(s)
Acetyl-CoA Carboxylase/antagonists & inhibitors , Diabetes Mellitus, Type 2/drug therapy , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Obesity/drug therapy , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Acetyl-CoA Carboxylase/metabolism , Animals , Crystallography, X-Ray , Diabetes Mellitus, Type 2/enzymology , Drug Design , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Fatty Acids/metabolism , Humans , Liver/drug effects , Liver/enzymology , Male , Malonyl Coenzyme A/metabolism , Mice , Mice, Inbred C57BL , Models, Molecular , Obesity/enzymology , Rats , Rats, Zucker , Small Molecule Libraries/pharmacokinetics , Small Molecule Libraries/therapeutic use , Structure-Activity Relationship
8.
J Am Chem Soc ; 127(6): 1737-43, 2005 Feb 16.
Article in English | MEDLINE | ID: mdl-15701008

ABSTRACT

The high-resolution X-ray crystal structures of the carbohydrate recognition domain of human galectin-3 were solved in complex with N-acetyllactosamine (LacNAc) and the high-affinity inhibitor, methyl 2-acetamido-2-deoxy-4-O-(3-deoxy-3-[4-methoxy-2,3,5,6-tetrafluorobenzamido]-beta-D-galactopyranose)-beta-D-glucopyranoside, to gain insight into the basis for the affinity-enhancing effect of the 4-methoxy-2,3,5,6-tetrafluorobenzamido moiety. The structures show that the side chain of Arg144 stacks against the aromatic moiety of the inhibitor, an interaction made possible by a reorientation of the side chain relative to that seen in the LacNAc complex. Based on these structures, synthesis of second generation LacNAc derivatives carrying aromatic amides at 3'-C, followed by screening with a novel fluorescence polarization assay, has led to the identification of inhibitors with further enhanced affinity for galectin-3 (K(d) > or = 320 nM). The thermodynamic parameters describing the binding of the galectin-3 C-terminal to selected inhibitors were determined by isothermal titration calorimetry and showed that the affinity enhancements were due to favorable enthalpic contributions. These enhancements could be rationalized by the combined effects of the inhibitor aromatic structure on a cation-Pi interaction and of direct interactions between the aromatic substituents and the protein. The results demonstrate that protein-ligand interactions can be significantly enhanced by the fine-tuning of arginine-arene interactions.


Subject(s)
Amino Sugars/chemistry , Arginine/chemistry , Galactose/analogs & derivatives , Galectin 3/antagonists & inhibitors , Galectin 3/chemistry , Cations , Crystallography, X-Ray , Fluorescence Polarization , Galactose/chemistry , Humans , Kinetics , Models, Molecular , Thermodynamics
9.
Anal Biochem ; 334(1): 36-47, 2004 Nov 01.
Article in English | MEDLINE | ID: mdl-15464951

ABSTRACT

Galectins are a family of beta-galactose binding lectins associated with functions such as immunological and malignant events. To study the binding affinity of galectins for natural and artificial saccharides and glycoconjugates we have developed an assay using fluorescence polarization. A collection of fluorescein-conjugated saccharides was synthesized and used as probes with galectins-1 and -3 and the two carbohydrate recognition domains of galectin-4. Direct binding of a fixed probe amount with different amounts of each galectin defined specificity and selectivity and permitted selection of the optimal probe for inhibition studies. Then fixed amounts of galectin and selected probe were used to screen the inhibitory potency of a library of nonfluorescent compounds. As the assay is in solution and does not require separation of free and bound probe, it is simple and rapid and can easily be applied to different unlabeled galectins. As all interaction components are known, K(d) values for galectin-inhibitor interaction can be directly calculated without approximation other than the assumption of a simple one-site competition.


Subject(s)
Carbohydrates/chemistry , Fluorescence Polarization , Fluorescent Dyes/chemical synthesis , Galectins/chemistry , Animals , Binding Sites , Carbohydrate Metabolism , Carbohydrates/pharmacology , Fluorescein , Fluorescent Dyes/chemistry , Galectin 1/antagonists & inhibitors , Galectin 1/chemistry , Galectin 1/metabolism , Galectin 3/antagonists & inhibitors , Galectin 3/chemistry , Galectin 3/metabolism , Galectin 4/antagonists & inhibitors , Galectin 4/chemistry , Galectin 4/metabolism , Galectins/antagonists & inhibitors , Galectins/metabolism , Humans , Hydrogen Bonding , Ligands , Protein Structure, Tertiary , Rats
12.
Chembiochem ; 3(2-3): 183-9, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-11921396

ABSTRACT

A strategy for generating potential galectin inhibitors was devised based on derivatization at the C-3' atom in 3'-amino-N-acetyllactosamine by using structural knowledge of the galectin carbohydrate recognition site. A collection of 12 compounds was prepared by N-acylations or N-sulfonylations. Hydrophobic tagging of the O-3 atom in the N-acetylglucosamine residue with a stearic ester allowed rapid and simple product purification. The compounds were screened in a galectin-3 binding assay and three compounds with significantly higher inhibitory activities compared to the parent N-acetyllactosaminide were found. These three best inhibitors all carried an aromatic amide at the C-3' position of the galactose moiety, which indicates that favorable interactions were formed between the aromatic group and galectin-3. The best inhibitor had an IC50 value (4.4 microM) about 50 times better than the parent N-acetyllactosaminide, which implies that it has potential as a valuable tool for studying galectin-3 biological functions and also as a lead compound for the development of galectin-3-blocking pharmaceuticals.


Subject(s)
Amino Sugars/pharmacology , Antigens, Differentiation/immunology , Amino Sugars/chemical synthesis , Binding Sites , Drug Design , Enzyme-Linked Immunosorbent Assay , Galectin 3
SELECTION OF CITATIONS
SEARCH DETAIL
...