Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34443576

ABSTRACT

Bioorthogonal click-reactions represent ideal means for labeling biomolecules selectively and specifically with suitable small synthetic dyes. Genetic code expansion (GCE) technology enables efficient site-selective installation of bioorthogonal handles onto proteins of interest (POIs). Incorporation of bioorthogonalized non-canonical amino acids is a minimally perturbing means of enabling the study of proteins in their native environment. The growing demand for the multiple modification of POIs has triggered the quest for developing orthogonal bioorthogonal reactions that allow simultaneous modification of biomolecules. The recently reported bioorthogonal [4 + 1] cycloaddition reaction of bulky tetrazines and sterically demanding isonitriles has prompted us to develop a non-canonical amino acid (ncAA) bearing a suitable isonitrile function. Herein we disclose the synthesis and genetic incorporation of this ncAA together with studies aiming at assessing the mutual orthogonality between its reaction with bulky tetrazines and the inverse electron demand Diels-Alder (IEDDA) reaction of bicyclononyne (BCN) and tetrazine. Results showed that the new ncAA, bulky-isonitrile-carbamate-lysine (BICK) is efficiently and specifically incorporated into proteins by genetic code expansion, and despite the slow [4 + 1] cycloaddition, enables the labeling of outer membrane receptors such as insulin receptor (IR) with a membrane-impermeable dye. Furthermore, double labeling of protein structures in live and fixed mammalian cells was achieved using the mutually orthogonal bioorthogonal IEDDA and [4 + 1] cycloaddition reaction pair, by introducing BICK through GCE and BCN through a HaloTag technique.


Subject(s)
Genetic Code , Lysine/chemistry , Lysine/genetics , Nitriles/chemistry , Cycloaddition Reaction , Fluorescent Dyes/chemistry , Staining and Labeling
2.
Chem Commun (Camb) ; 56(40): 5425-5428, 2020 May 18.
Article in English | MEDLINE | ID: mdl-32292970

ABSTRACT

A photoactivatable fluorogenic tetrazine-rhodaphenothiazine probe was synthesized and studied in light-assisted, bioorthogonal labeling schemes. Experimental results revealed that the bioorthogonally conjugated probe efficiently sensitizes 1O2 generation upon illumination with green or orange light and undergoes self-oxidation leading to an intensely fluorescent sulfoxide product. An added value of the present probe is that it is also suitable for STED super-resolution microscopy using a 660 nm depletion laser.


Subject(s)
Fluorescent Dyes/chemistry , Phenothiazines/chemistry , Photosensitizing Agents/chemistry , Rhodamines/chemistry , Animals , COS Cells , Chlorocebus aethiops , Fluorescent Dyes/radiation effects , Lasers , Light , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Oxidation-Reduction/radiation effects , Phenothiazines/radiation effects , Photosensitizing Agents/radiation effects , Rhodamines/radiation effects , Singlet Oxygen/chemistry
3.
Bioorg Med Chem ; 28(1): 115218, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31796371

ABSTRACT

A set of new, bioorthogonally applicable tetrazine and polarity modulated double fluorogenic π-extended rhodamine probes were synthesized. Fluorogenicity and cell labeling experiments suggest that combination of the two quenching mechanisms allows low background labeling schemes even for probes with poor reactivity based fluorogenicity. Two of the new probes were tested in biological labeling schemes of intracellular proteins both in fixed and live cells. The labeled cells were subsequently subjected to confocal and STED imaging. These studies revealed that the rhodaindanes tested are membrane permeable, can stand the challenging environment of live cells and suitable for bioorthogonal, site-specific labeling of intracellular proteins. Furthermore, we found that both probes are suitable for subdiffraction imaging of the labeled structures using STED microscopy.


Subject(s)
Fluorescent Dyes/chemistry , Optical Imaging , Rhodamines/chemistry , Animals , COS Cells , Chlorocebus aethiops , Microscopy, Confocal , Molecular Structure
4.
Org Biomol Chem ; 16(16): 2997-3005, 2018 04 25.
Article in English | MEDLINE | ID: mdl-29629719

ABSTRACT

One of the most popular means to follow interactions between bio(macro)molecules is Förster resonance energy transfer (FRET). There is large interest in widening the selection of fluorescent FRET pairs especially in the region of the red/far red range, where minimal autofluorescence is encountered. A set of bioorthogonally applicable fluorescent dyes, synthesized recently in our lab, were paired (Cy3T/Cy5T; Cy1A/Cy3T and Cy1A/CBRD1A) based on their spectral characteristics in order to test their potential in FRET applications. For fast elaboration of the selected pairs we have created a bioorthogonalized platform based on complementary 17-mer DNA oligomers. The cyclooctynylated strands were modified nearly quantitatively with the fluorophores via bioorthogonal chemistry steps, using azide- (Cy1; CBRD1) or tetrazine-modified (Cy3; Cy5) dyes. Reactions were followed by capillary electrophoresis using a method specifically developed for this project. FRET efficiencies of the fluorescent dye pairs were compared both in close proximity (5' and 3' matched) and at larger distance (5' and 5' matched). The specificity of FRET signals was further elaborated by denaturation and competition studies. Cy1A/Cy3T and Cy1A/CBRD1A introduced here as novel FRET pairs are highly recommended for FRET applications based on the significant changes in fluorescence intensities of the donor and acceptor peaks. Application of one of the FRET pairs was demonstrated in live cells, transfected with labeled oligos. Furthermore, the concise installation of the dyes allows for efficient fluorescence modification of any selected DNA strands as was demonstrated in the construction of Cy3T labeled oligomers, which were used in the FISH-based detection of Helicobacter pylori.

SELECTION OF CITATIONS
SEARCH DETAIL
...