Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 489: 117009, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906509

ABSTRACT

INTRODUCTION: Aripiprazole (ARI) is a recently developed antipsychotic medication that belongs to the second generation of antipsychotics. The literature has contradictory information regarding ARI, which has been classified as pregnant use category C by the FDA. METHODS: 125 pathogen-free fertilized eggs were incubated for 28 h and divided into five groups of 25 eggs each (including the control group), and 18 eggs with intact integrity were selected from each group. After the experimental groups were divided, ARI was administered subblastodermally with a Hamilton micro-injector at 4 different doses (1 mg/kg, 5 mg/kg, 10 mg/kg, 20 mg/kg). At the 48th hour of incubation, all eggs were hatched and embryos were removed from the embryonic membranes. And then morphologic (position of the neural tube (open or closed), crown-rump length, number of somites, embryological development status), histopathologic (apoptosis (caspase 3), cell proliferation (PCNA), in situ recognition of DNA breaks (tunnel)), genetic (BRE gene expression) analyzes were performed. RESULTS: According to the results of the morphological analysis, when the frequency of neural tube patency was evaluated among the experimental groups, a statistically significant difference was determined between the control group and all groups (p < 0.001). In addition, the mean crown-rump length and somite number of the embryos decreased in a dose-dependent manner compared to the control group. It was determined that mRNA levels of the BRE gene decreased in embryos exposed to ARI compared to the control group (p < 0.001). CONCLUSION: Morphologically, histopathologically, and genetically, aripiprazole exposure delayed neurogenesis and development in early chick embryos. These findings suggest its use in pregnant women may be teratogenic. We note that these results are preliminary for pregnant women, but they should be expanded and studied with additional and other samples.

2.
Toxicol Appl Pharmacol ; 489: 117011, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906510

ABSTRACT

The critical developmental stages of the embryo are strongly influenced by the dietary composition of the mother. Acrylamide is a food contaminant that can form in carbohydrate-rich foods that are heat-treated. The aim of this study was to investigate the toxicity of a relatively low dose of acrylamide on the development of the neural tube in the early stage chick embryos. Specific pathogen-free fertilized eggs (n = 100) were treated with acrylamide (0.1, 0.5, 2.5, 12.5 mg/kg) between 28-30th hours of incubation and dissected at 48th hours. In addition to morphological and histopathological examinations, proliferating cell nuclear antigen (PCNA) and caspase 3 were analyzed immunohistochemically. The brain and reproductive expression gene (BRE) was analyzed by RT-PCR. Acrylamide exposure had a negative effect on neural tube status even at a very low dose (0.1 mg/kg) (p < 0.05). Doses of 0.5 mg/kg and above caused a delay in neural tube development (p < 0.05). Crown-rump length and somite count decreased dose-dependently, while this decrease was not significant in the very low dose group (p > 0.05), which was most pronounced at doses of 2.5 and 12.5 mg/kg (p < 0.001). Acrylamide exposure dose-dependently decreased PCNA and increased caspase 3, with this change being significant at doses of 0.5 mg/kg and above (p < 0.001). BRE was downregulated at all acrylamide exposures except in the very low dose group (0.1 mg/kg). In conclusion, we find that acrylamide exposure (at 0.5 mg/kg and above) in post-gastrulation delays neural tube closure in chicken embryos by suppressing proliferation and apoptosis induction and downregulating BRE gene expression.

3.
Med Oncol ; 40(5): 131, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36971893

ABSTRACT

Rutin is one of the flavonoids found in fruits and vegetables. The PI3K/AKT/mTOR signaling pathway is critical for the life cycle at the cellular level. In current study, we purposed to demonstrate the antitumoral effect of rutin at different doses through the mTOR-signaling pathway and argyrophilic nucleolar regulatory region. EAC cells were injected subcutaneously into the experimental groups. 25 and 50 mg/kg Rutin were injected intraperitoneally to the animals with solid tumors for 14 days. Immunohistochemical, Real-time PCR and AgNOR analyzes were actualized on the taken tumors. When the rutin given groups and the tumor group were compared, the tumor size increase was detected to be statistically significant (p < 0.05). In immunohistochemical analysis, a significant decrease was encountered in the AKT, mTOR, PI3K and F8 expressions especially in the groups administered 25 mg Rutin, in comparison with the control group (p < 0.05). AgNOR area/nuclear area (TAA/NA) and average AgNOR number were determineted, and statistically important differences were detected between the groups in terms of TAA/NA ratio (p < 0.05). There were significant statistical differences between the mRNA quantity of the PI3K, AKT1 and mTOR genes (p < 0.05). In the in vitro study, cell apoptosis was evaluated with different doses of annexin V and it was determined that a dose of 10 µg/mL Rutin induced apoptosis (p < 0.05). In our study, it was demonstrated in vivo and in vitro that Rutin has an anti-tumor effect on the development of solid tumors formed by both EAC cells.


Subject(s)
Neoplasms , Proto-Oncogene Proteins c-akt , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Neoplasms/drug therapy , Rutin/pharmacology , Apoptosis , Cell Proliferation
4.
Chem Biol Drug Des ; 101(4): 915-926, 2023 04.
Article in English | MEDLINE | ID: mdl-36546873

ABSTRACT

In this study, the protective effect of melatonin was investigated in lipopolysaccharide induced sepsis model. Twenty-eight rats were randomly divided: Control, Melatonin, LPS and LPS + Melatonin. After LPS application, surgically remove kidney and liver tissues. The level of malondialdehyde (MDA) an oxidative stress marker and the immunoreactivity of Toll-like receptor-4 (TLR4), tumor necrosis factor-α (TNF-α), and transcription factor NF-κB were evaluated immunohistochemically. Expression levels for TLR4, TNF-α, NF-kB, IL-1ß (interleukin 1 beta), and IL-6 (interleukin 6) were evaluated. Additionally, Argyrophilic NOR staining was performed in tissues. Vacuolization and inflammation were more intense in the kidney and liver sections in the LPS group compared to the other groups. It was observed that vacuolization and inflammation were decreased in LPS + Melatonin applied groups. It was determined that glomerular damage was increased in the LPS and LPS-melatonin groups, but the damage rate LPS-Melatonin group was decrease in the LPS group. It was determined that the MDA level in tissues of the LPS group was importantly increased compared to other groups. Additionally, TAA/NA ratio statistically significant differences were discovered between the groups. This study supports the potential protective effects of 10 mg/kg melatonin by modulating critical markers of local immune reaction in a model of LPS-induced sepsis.


Subject(s)
Melatonin , Sepsis , Rats , Animals , NF-kappa B/metabolism , Melatonin/pharmacology , Nuclear Proteins/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/pharmacology , Signal Transduction , Interleukin-6 , Inflammation
5.
Oncol Res ; 32(1): 175-185, 2023.
Article in English | MEDLINE | ID: mdl-38188676

ABSTRACT

Melatonin is a versatile indolamine synthesized and secreted by the pineal gland in response to the photoperiodic information received by the retinohypothalamic signaling pathway. Melatonin has many benefits, such as organizing circadian rhythms and acting as a powerful hormone. We aimed to show the antitumor effects of melatonin in both in vivo and in vitro models through the mammalian target of rapamycin (mTOR) signaling pathway and the Argyrophilic Nucleolar Regulatory Region (AgNOR), using the Microcomputed Tomography (Micro CT). Ehrlich ascites carcinoma (EAC) cells were administered into the mice by subcutaneous injection. Animals with solid tumors were injected intraperitoneally with 50 and 100 mg/kg melatonin for 14 days. Volumetric measurements for the taken tumors were made with micro-CT imaging, immunohistochemistry (IHC), real-time polymerase chain reaction (PCR) and AgNOR. Statistically, the tumor tissue volume in the Tumor+100 mg/kg melatonin group was significantly lower than that in the other groups in the data obtained from micro-CT images. In the IHC analysis, the groups treated with Tumor+100 mg/kg melatonin were compared when the mTOR signaling pathway and factor 8 (F8) expression were compared with the control group. It was determined that there was a significant decrease (p < 0.05). Significant differences were found in the total AgNOR area/nuclear area (TAA/NA) ratio in the treatment groups (p < 0.05). Furthermore, there were significant differences between the amount of mTOR mRNA for the phosphatidylinositol 3-kinase (PI3K), AKT Serine/Threonine Kinase (PKB/AKT) genes (p < 0.05). Cell apoptosis was evaluated with Annexin V in an in vitro study with different doses of melatonin; It was observed that 100 µg/mL melatonin dose caused an increase in the apoptotic cell death. In this study, we have reported anti-tumor effects of melatonin in cell culture studies as well as in mice models. Comprehensive characterization of the melatonin-mediated cancer inhibitory effects will be valuable in advancing our fundamental molecular understanding and translatability of pre-clinical findings to earlier phases of clinical trials.


Subject(s)
Carcinoma , Melatonin , Humans , Animals , Mice , Melatonin/pharmacology , Melatonin/therapeutic use , X-Ray Microtomography , Ascites , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...