Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(18)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32933063

ABSTRACT

The application of double perovskite cobaltites BaLnCo2O6-δ (Ln = lanthanide element) in electrochemical devices for energy conversion requires control of their properties at operating conditions. This work presents a study of a series of BaLnCo2O6-δ (Ln = La, Pr, Nd) with a focus on the evolution of structural and electrical properties with temperature. Symmetry, oxygen non-stoichiometry, and cobalt valence state have been examined by means of Synchrotron Radiation Powder X-ray Diffraction (SR-PXD), thermogravimetry (TG), and X-ray Absorption Spectroscopy (XAS). The results indicate that all three compositions maintain mainly orthorhombic structure from RT to 1000 °C. Chemical expansion from Co reduction and formation of oxygen vacancies is observed and characterized above 350 °C. Following XAS experiments, the high spin of Co was ascertained in the whole range of temperatures for BLC, BPC, and BNC.

2.
Inorg Chem ; 57(4): 2103-2110, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29389120

ABSTRACT

A high-entropy alloy (HEA) of HfNbTiVZr was synthesized using an arc furnace followed by ball milling. The hydrogen absorption mechanism was studied by in situ X-ray diffraction at different temperatures and by in situ and ex situ neutron diffraction experiments. The body centered cubic (BCC) metal phase undergoes a phase transformation to a body centered tetragonal (BCT) hydride phase with hydrogen occupying both tetrahedral and octahedral interstitial sites in the structure. Hydrogen cycling of the alloy at 500 °C is stable. The large lattice strain in the HEA seems favorable for absorption in both octahedral and tetrahedral sites. HEAs therefore have potential as hydrogen storage materials because of favorable absorption in all interstitial sites within the structure.

3.
Inorg Chem ; 53(18): 9715-21, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25167129

ABSTRACT

Lead metaniobate (PbNb2O6) can exist both as a stable rhombohedral and a metastable orthorhombic tungsten-bronze-type polymorph. Although the orthorhombic is a well-known ferroelectric material, the rhombohedral polymorph has been far less studied. The crystal structure and energetic stability of the stable rhombohedral polymorph of lead metaniobate is re-examined by powder X-ray diffraction and powder neutron diffraction in combination with ab initio calculations. We show that this structure is described by the polar space group R3, in contradiction to the previously reported space group R3m. The crystal structure is unusual, consisting of edge-sharing dimers of NbO(6/2) octahedra forming layers with 6- and 3-fold rings of octahedra and lead ions in channels formed by these rings. The layers are connected by corner-sharing between octahedra. Finally, the crystal structure is discussed in relation to other AB2O6 compounds with B = Nb, Ta.

SELECTION OF CITATIONS
SEARCH DETAIL
...