Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(3): e0119207, 2015.
Article in English | MEDLINE | ID: mdl-25793507

ABSTRACT

Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the ß-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site.


Subject(s)
Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Binding Sites , Catalytic Domain , Humans , Models, Molecular , Mutagenesis, Site-Directed , SELEX Aptamer Technique , Scattering, Small Angle , Urokinase-Type Plasminogen Activator/chemistry , X-Ray Diffraction
2.
Appl Microbiol Biotechnol ; 70(5): 548-57, 2006 May.
Article in English | MEDLINE | ID: mdl-16193277

ABSTRACT

The bacterial strain Flavobacterium sp. 4214 isolated from Greenland was found to express beta-galactosidase (EC 3.2.1.23) at temperatures below 25 degrees C. A chromosomal library of Flavobacterium sp. 4214 was constructed in Escherichia coli, and the gene gal4214-1 encoding a beta-galactosidase of 1,046 amino acids (114.3 kDa) belonging to glycosyl hydrolase family 2 was isolated. This was the only gene encoding beta-galactosidase activity that was identified in the chromosomal library. Expression levels in both Flavobacterium sp. 4214 and in initial recombinant E. coli strains were insufficient for biochemical characterization. However, a combination of T7 promoter expression and introduction of an E. coli host that complemented rare transfer RNA genes yielded 15 mg of beta-galactosidase per liter of culture. Gal4214-1-His protein was found to be active in monomeric conformation. The protein was secreted from the cytoplasm, probably through an N-terminal signaling sequence. The Gal4214-1-His protein was found to have optimum activity at a temperature of 42 degrees C, but with short-term stability at temperatures above 25 degrees C.


Subject(s)
Environment , Flavobacterium/enzymology , Temperature , beta-Galactosidase/isolation & purification , beta-Galactosidase/metabolism , Amino Acid Sequence , Flavobacterium/metabolism , Greenland , Molecular Sequence Data , beta-Galactosidase/chemistry , beta-Galactosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...