Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 19(4): 525-32, 2005.
Article in English | MEDLINE | ID: mdl-15655793

ABSTRACT

Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and multivariate data analysis have been used for the determination of wheat quality at different stages of grain development. Wheat varieties with one of two different end-use qualities (i.e. suitable or not suitable for bread-making purposes) were investigated. The samples were collected from grains from 15 until 45 days post-anthesis (dpa). Gluten proteins from wheat grains were extracted and subsequently analysed by mass spectrometry. Discrimination partial least-squares regression and soft independent modelling of class analogy were used to determine the quality of new and unknown wheat samples. With these methods, we were able to predict correctly the end-use qualities at every stage investigated. This new fast technique, based on the rapidity of mass spectrometry combined with the objectivity of multivariate data analysis, offers a method that can replace the traditional rather time-consuming ones such as gel electrophoresis. This study focused on the determination of wheat quality at 15 dpa, when the grain is due for harvest 1 month later.


Subject(s)
Edible Grain/chemistry , Food Analysis/methods , Multivariate Analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Triticum/chemistry , Quality Control
2.
Rapid Commun Mass Spectrom ; 16(12): 1232-7, 2002.
Article in English | MEDLINE | ID: mdl-12112276

ABSTRACT

The performance of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry with neural networks in wheat variety classification is further evaluated.1 Two principal issues were studied: (a) the number of varieties that could be classified correctly; and (b) various means of pre-processing mass spectrometric data. The number of wheat varieties tested was increased from 10 to 30. The main pre-processing method investigated was based on Gaussian smoothing of the spectra, but other methods based on normalisation procedures and multiplicative scatter correction of data were also used. With the final method, it was possible to classify 30 wheat varieties with 87% correctly classified mass spectra and a correlation coefficient of 0.90.

SELECTION OF CITATIONS
SEARCH DETAIL
...