Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Microorganisms ; 4(3)2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27681926

ABSTRACT

Sequencing surveys of microbial communities in marine subsurface sediments have focused on organic-rich, continental margins; the database for organic-lean deep-sea sediments from mid-ocean regions is underdeveloped. The archaeal community in subsurface sediments of ODP Site 1225 in the eastern equatorial Pacific (3760 m water depth; 1.1 and 7.8 m sediment depth) was analyzed by PCR, cloning and sequencing, and by denaturant gradient gel electrophoresis (DGGE) of 16S rRNA genes. Three uncultured archaeal lineages with different depth distributions were found: Marine Group I (MG-I) within the Thaumarchaeota, its sister lineage Marine Benthic Group A (MBG-A), the phylum-level archaeal lineage Marine Benthic Group B (also known as Deep-Sea Archaeal Group or Lokiarchaeota), and the Deep-Sea Euryarchaeotal Group 3. The MG-I phylotypes included representatives of sediment clusters that are distinct from the pelagic members of this phylum. On the scale from fully oxidized, extremely organic carbon-depleted sediments (for example, those the South Pacific Gyre) to fully reduced, organic carbon-rich marine subsurface sediments (such as those of the Peru Margin), Ocean Drilling Program (ODP) Site 1225 falls into the non-extreme organic carbon-lean category, and harbors archaeal communities from both ends of the spectrum.

2.
Appl Environ Microbiol ; 75(22): 7086-96, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19801479

ABSTRACT

Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. One strategy to control SRP activity is the addition of nitrate to the injection water. Production waters from two adjacent, hot (80 degrees C) oil reservoirs, one with and one without nitrate treatment, were compared for prokaryotic community structure and activity of SRP. Bacterial and archaeal 16S rRNA gene analyses revealed higher prokaryotic abundance but lower diversity for the nitrate-treated field. The 16S rRNA gene clone libraries from both fields were dominated by sequences affiliated with Firmicutes (Bacteria) and Thermococcales (Archaea). Potential heterotrophic nitrate reducers (Deferribacterales) were exclusively found at the nitrate-treated field, possibly stimulated by nitrate addition. Quantitative PCR of dsrAB genes revealed that archaeal SRP (Archaeoglobus) dominated the SRP communities, but with lower relative abundance at the nitrate-treated site. Bacterial SRP were found in only low abundance at both sites and were nearly exclusively affiliated with thermophilic genera (Desulfacinum and Desulfotomaculum). Despite the high abundance of archaeal SRP, no archaeal SRP activity was detected in [(35)S]sulfate incubations at 80 degrees C. Sulfate reduction was found at 60 degrees C in samples from the untreated field and accompanied by the growth of thermophilic bacterial SRP in batch cultures. Samples from the nitrate-treated field generally lacked SRP activity. These results indicate that (i) Archaeoglobus can be a major player in hot oil reservoirs, and (ii) nitrate may act in souring control-not only by inhibiting SRP, but also by changing the overall community structure, including the stimulation of competitive nitrate reducers.


Subject(s)
Archaea/drug effects , Archaea/physiology , Bacteria/drug effects , Bacterial Physiological Phenomena , Biodiversity , Hot Temperature , Nitrates/pharmacology , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Colony Count, Microbial , Molecular Sequence Data , Nitrates/chemistry , Petroleum/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Sulfates/metabolism , Water/chemistry , Water Microbiology
3.
Appl Environ Microbiol ; 71(11): 7352-65, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16269778

ABSTRACT

A hypersaline, endoevaporitic microbial community in Eilat, Israel, was studied by microscopy and by PCR amplification of genes for 16S rRNA from different layers. In terms of biomass, the oxygenic layers of the community were dominated by Cyanobacteria of the Halothece, Spirulina, and Phormidium types, but cell counts (based on 4',6'-diamidino-2-phenylindole staining) and molecular surveys (clone libraries of PCR-amplified genes for 16S rRNA) showed that oxygenic phototrophs were outnumbered by the other constituents of the community, including chemotrophs and anoxygenic phototrophs. Bacterial clone libraries were dominated by phylotypes affiliated with the Bacteroidetes group and both photo- and chemotrophic groups of alpha-proteobacteria. Green filaments related to the Chloroflexi were less abundant than reported from hypersaline microbial mats growing at lower salinities and were only detected in the deepest part of the anoxygenic phototrophic zone. Also detected were nonphototrophic gamma- and delta-proteobacteria, Planctomycetes, the TM6 group, Firmicutes, and Spirochetes. Several of the phylotypes showed a distinct vertical distribution in the crust, suggesting specific adaptations to the presence or absence of oxygen and light. Archaea were less abundant than Bacteria, their diversity was lower, and the community was less stratified. Detected archaeal groups included organisms affiliated with the Methanosarcinales, the Halobacteriales, and uncultured groups of Euryarchaeota.


Subject(s)
Archaea/isolation & purification , Bacteria/isolation & purification , Ecosystem , Fresh Water/microbiology , Geologic Sediments/microbiology , Sodium Chloride , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Calcium Sulfate/chemistry , Chemical Precipitation , DNA Fingerprinting , DNA, Archaeal/analysis , DNA, Bacterial/analysis , Genes, rRNA , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
4.
Appl Environ Microbiol ; 70(3): 1608-16, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15006785

ABSTRACT

The salinity responses of cyanobacteria, anoxygenic phototrophs, sulfate reducers, and methanogens from the laminated endoevaporitic community in the solar salterns of Eilat, Israel, were studied in situ with oxygen microelectrodes and in the laboratory in slurries. The optimum salinity for the sulfate reduction rate in sediment slurries was between 100 and 120 per thousand, and sulfate reduction was strongly inhibited at an in situ salinity of 215 per thousand. Nevertheless, sulfate reduction was an important respiratory process in the crust, and reoxidation of formed sulfide accounted for a major part of the oxygen budget. Methanogens were well adapted to the in situ salinity but contributed little to the anaerobic mineralization in the crust. In slurries with a salinity of 180 per thousand or less, methanogens were inhibited by increased activity of sulfate-reducing bacteria. Unicellular and filamentous cyanobacteria metabolized at near-optimum rates at the in situ salinity, whereas the optimum salinity for anoxygenic phototrophs was between 100 and 120 per thousand.


Subject(s)
Ecosystem , Environmental Microbiology , Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , Israel , Methane/analysis , Methanosarcinaceae/isolation & purification , Methanosarcinaceae/metabolism , Oxidation-Reduction , Oxygen/analysis , Oxygen Consumption , Photosynthesis , Sodium Chloride/analysis , Sulfates/analysis , Sulfides/analysis
SELECTION OF CITATIONS
SEARCH DETAIL