Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 17(4)2017 Apr 22.
Article in English | MEDLINE | ID: mdl-28441738

ABSTRACT

The importance of Non-Destructive Testing (NDT) to check the integrity of materials in different fields of industry has increased significantly in recent years. Actually, industry demands NDT methods that allow fast (preferably non-contact) detection and localization of early-stage defects with easy-to-interpret results, so that even a non-expert field worker can carry out the testing. The main challenge is to combine as many of these requirements into one single technique. The concept of acoustic cameras, developed for low frequency NDT, meets most of the above-mentioned requirements. These cameras make use of an array of microphones to visualize noise sources by estimating the Direction Of Arrival (DOA) of the impinging sound waves. Until now, however, because of limitations in the frequency range and the lack of integrated nonlinear post-processing, acoustic camera systems have never been used for the localization of incipient damage. The goal of the current paper is to numerically investigate the capabilities of locating incipient damage by measuring the nonlinear airborne emission of the defect using a non-contact ultrasonic sensor array. We will consider a simple case of a sample with a single near-surface crack and prove that after efficient excitation of the defect sample, the nonlinear defect responses can be detected by a uniform linear sensor array. These responses are then used to determine the location of the defect by means of three different DOA algorithms. The results obtained in this study can be considered as a first step towards the development of a nonlinear ultrasonic camera system, comprising the ultrasonic sensor array as the hardware and nonlinear post-processing and source localization software.

2.
PLoS One ; 12(2): e0162642, 2017.
Article in English | MEDLINE | ID: mdl-28245241

ABSTRACT

Peroxisome proliferator-activated receptor γ (PPARγ) is a well-known target for thiazolidinedione antidiabetic drugs. In this paper, we present the synthesis and biological evaluation of a series of dihydropyrano[2,3-c]pyrazole derivatives as a novel family of PPARγ partial agonists. Two analogues were found to display high affinity for PPARγ with potencies in the micro molar range. Both of these hits were selective against PPARγ, since no activity was measured when tested against PPARα, PPARδ and RXRα. In addition, a novel modelling approach based on multiple individual flexible alignments was developed for the identification of ligand binding interactions in PPARγ. In combination with cell-based transactivation experiments, the flexible alignment model provides an excellent analytical tool to evaluate and visualize the effect of ligand chemical structure with respect to receptor binding mode and biological activity.


Subject(s)
PPAR gamma/agonists , PPAR gamma/metabolism , Pyrans/chemical synthesis , Pyrans/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Animals , Binding Sites , Binding, Competitive , Cell Line, Tumor , Drug Design , Humans , Inhibitory Concentration 50 , Ligands , Mice , Protein Binding , Protein Conformation , Thermodynamics , Transcription Factors/metabolism
3.
Eur J Immunol ; 42(6): 1405-16, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22678897

ABSTRACT

Efficient presentation of peptide-MHC class I (pMHC-I) complexes to immune T cells should benefit from a stable peptide-MHC-I interaction. However, it has been difficult to distinguish stability from other requirements for MHC-I binding, for example, affinity. We have recently established a high-throughput assay for pMHC-I stability. Here, we have generated a large database containing stability measurements of pMHC-I complexes, and re-examined a previously reported unbiased analysis of the relative contributions of antigen processing and presentation in defining cytotoxic T lymphocyte (CTL) immunogenicity [Assarsson et al., J. Immunol. 2007. 178: 7890-7901]. Using an affinity-balanced approach, we demonstrated that immunogenic peptides tend to be more stably bound to MHC-I molecules compared with nonimmunogenic peptides. We also developed a bioinformatics method to predict pMHC-I stability, which suggested that 30% of the nonimmunogenic binders hitherto classified as "holes in the T-cell repertoire" can be explained as being unstably bound to MHC-I. Finally, we suggest that nonoptimal anchor residues in position 2 of the peptide are particularly prone to cause unstable interactions with MHC-I. We conclude that the availability of accurate predictors of pMHC-I stability might be helpful in the elucidation of MHC-I restricted antigen presentation, and might be instrumental in future search strategies for MHC-I epitopes.


Subject(s)
Histocompatibility Antigens Class I/chemistry , Peptides/chemistry , T-Lymphocytes, Cytotoxic/immunology , Antigen Presentation , Computational Biology , Histocompatibility Antigens Class I/immunology , Humans , Protein Stability
4.
Gene ; 397(1-2): 114-25, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17531407

ABSTRACT

OsIpk and HvIpk, inositol phosphate kinases, were cloned from rice (Oryza sativa L. var. indica, IR64) and barley (Hordeum vulgare) respectively. Sequence alignment showed that they belong to the ATP-grasp family, which includes inositol 1,3,4-trisphosphate 5/6-kinase from humans and Arabidopsis. Residues that are binding sites for ATP and coordinate magnesium in absence or presence of inositol phosphate are conserved and in total 23 residues are invariant among the twelve aligned inositol phosphate kinases. The genes were heterologously expressed in Escherichia coli and kinase activity assays with 17 different isomers of inositol mono-/di-/tri-/tetra-/pentaphosphate as well as phytate were performed. The strongest activity for both kinases was observed with Ins(3,4,5,6)P(4), which candidates as the primary substrate for these kinases in plants. Several species-specific differences between the two recombinant Ipks were observed. Rice OsIpk showed detectable kinase activity towards eight different substrates, whereas barley HvIpk showed kinase activity with all the substrates including inositol mono- and bisphosphates. HvIpk showed 3-kinase activity towards the Ins(1,4,5)P(3) substrate and it also interconverted the two substrates Ins(1,3,4,5)P(4) and Ins(1,3,4,6)P(4) by isomerase activity, which was not observed for the rice homologue. Both OsIpk and HvIpk had no detectable 2-kinase activity. Furthermore, the two Ipks showed phosphatase activity towards several inositol phosphates. Expression analysis by RT-PCR demonstrated that the Ipk gene was equally expressed in different tissues and developmental stages. Taken together, these results show that the Ipk kinase plays a significant role in the inositol phosphate interacting network in plants.


Subject(s)
Hordeum/enzymology , Hordeum/genetics , Oryza/enzymology , Oryza/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Amino Acid Sequence , Cloning, Molecular , Genes, Plant , Inositol Phosphates/metabolism , Molecular Sequence Data , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phylogeny , Phytic Acid/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Species Specificity , Substrate Specificity
5.
Science ; 310(5748): 643, 2005 Oct 28.
Article in English | MEDLINE | ID: mdl-16254180

ABSTRACT

The 26 December 2004 Indian Ocean tsunami had major effects on coastal communities and ecosystems. An assessment of coastlines after the tsunami indicates that coastal vegetation such as mangroves and beach forests helped to provide protection and reduce effects on adjacent communities. In recent years, mangroves and other coastal vegetation have been cleared or degraded along many coastlines, increasing their vulnerability to storm and tsunami damage. Establishing or strengthening greenbelts of mangroves and other coastal forests may play a key role in reducing the effect of future extreme events.


Subject(s)
Disasters , Trees , Asia , Ecosystem , Indian Ocean , Rhizophoraceae
6.
Nat Cell Biol ; 7(4): 374-80, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15765105

ABSTRACT

Formins are actin-organizing proteins that are involved in cytokinesis and cell polarity. In the plant Arabidopsis thaliana, there are more than 20 formin homologues, all of which have unknown roles. In this study, we characterize specific cellular and molecular functions of the Arabidopsis formin AtFH5. Despite the low identity of AtFH5 to yeast and mammalian formins, the AtFH5 protein interacts with the barbed end of actin filaments and nucleates actin-filament polymerization in vitro, as is the case in yeast and mammals. In vivo, the AtFH5-GFP fusion protein localizes to the cell plate, a plant-specific membranous component that is assembled at the plane of cell division. Consistent with these data, loss of function of atfh5 compromises cytokinesis in the seed endosperm. Furthermore, endogenous AtFH5 transcripts accumulate in the posterior pole of the endosperm and loss of function of atfh5 perturbs proper morphogenesis of the endosperm posterior pole. Although cytokinesis in animals, yeast and plants occurs through morphologically distinct mechanisms, our study finds that formin recruitment to sites of actin assembly is a common feature of cell division among eukaryotes.


Subject(s)
Actins/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cytokinesis/physiology , Actins/chemistry , Actins/genetics , Alleles , Amino Acid Sequence , Arabidopsis/chemistry , Cloning, Molecular , Exons , Green Fluorescent Proteins/genetics , Molecular Sequence Data , Mutation , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Time Factors
7.
Development ; 129(24): 5567-76, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12421698

ABSTRACT

Distinct forms of cytokinesis characterise specific phases of development in plants. In Arabidopsis, as in many other species, the endosperm that nurtures the embryo in the seed initially develops as a syncytium. This syncytial phase ends with simultaneous partitioning of the multinucleate cytoplasm into individual cells, a process referred to as cellularisation. Our in vivo observations show that, as in cytokinesis, cellularisation of the Arabidopsis endosperm is coupled to nuclear division. A genetic analysis reveals that most Arabidopsis mutations affecting cytokinesis in the embryo also impair endosperm cellularisation. These results imply that cellularisation and cytokinesis share multiple components of the same basic machinery. We further report the identification of mutations in a novel gene, SPATZLE, that specifically interfere with cellularisation of the endosperm, but not with cytokinesis in the embryo. The analysis of this mutant might identify a specific checkpoint for the onset of cellularisation.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Division , Cell Nucleus/physiology , Cell Wall , Chromosome Mapping , Homozygote , Microscopy, Confocal , Mitosis , Mutation , Phenotype , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...