Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Quant Imaging Med Surg ; 13(7): 4603-4617, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37456280

ABSTRACT

Background: An aberration correction algorithm has been implemented and demonstrated in an echocardiographic clinical trial using two-dimensional (2D) imaging. The method estimates and compensates arrival time errors between different sub-aperture processor (SAP) signals in a matrix array probe. Methods: Five standard views of channel data cineloops were recorded from 22 patients (11 male and 11 female) resulting in a total of 116 cineloops. The channel data were processed with and without the aberration correction algorithm, allowing for side-by-side comparison of images processed from the same channel data cineloops. Results: The aberration correction algorithm improved image quality, as quantified by a coherence metric, in all 7,380 processed frames. In a blinded and left-right-randomized side-by-side evaluation, four cardiologists (two experienced and two in training) preferred the aberration corrected cineloops in 97% of the cases. The clinicians reported that the corrected cineloops appeared sharper with better contrast and less noise. Many structures like valve leaflets, chordae, endocardium, and endocardial borders appeared narrower and more clearly defined in the aberration corrected images. An important finding is that aberration correction improves contrast between the endocardium and ventricle cavities for every processed image. The gain difference was confirmed by the cardiologists in their feedback and quantified with a median global gain difference estimate between the aberration-corrected and non-corrected images of 1.2 dB. Conclusions: The study shows the potential value of aberration correction in clinical echocardiography. Systematic improvement of images acquired with state-of-art equipment was observed both with quantitative metrics of image quality and clinician preference.

2.
Article in English | MEDLINE | ID: mdl-27913326

ABSTRACT

Although interventional devices, such as needles, guide wires, and catheters, are best visualized by X-ray, real-time volumetric echography could offer an attractive alternative as it avoids ionizing radiation; it provides good soft tissue contrast, and it is mobile and relatively cheap. Unfortunately, as echography is traditionally used to image soft tissue and blood flow, the appearance of interventional devices in conventional ultrasound images remains relatively poor, which is a major obstacle toward ultrasound-guided interventions. The objective of this paper was therefore to enhance the appearance of interventional devices in ultrasound images. Thereto, a modified ultrasound beamforming process using conventional-focused transmit beams is proposed that exploits the properties of received signals containing specular reflections (as arising from these devices). This new beamforming approach referred to as delay and standard deviation beamforming (DASD) was quantitatively tested using simulated as well as experimental data using a linear array transducer. Furthermore, the influence of different imaging settings (i.e., transmit focus, imaging depth, and scan angle) on the obtained image contrast was evaluated. The study showed that the image contrast of specular regions improved by 5-30 dB using DASD beamforming compared with traditional delay and sum (DAS) beamforming. The highest gain in contrast was observed when the interventional device was tilted away from being orthogonal to the transmit beam, which is a major limitation in standard DAS imaging. As such, the proposed beamforming methodology can offer an improved visualization of interventional devices in the ultrasound image with potential implications for ultrasound-guided interventions.


Subject(s)
Image Processing, Computer-Assisted/methods , Signal Processing, Computer-Assisted , Ultrasonography, Interventional/methods , Animals , Catheters , Cattle , Models, Biological , Needles , Phantoms, Imaging , Red Meat
SELECTION OF CITATIONS
SEARCH DETAIL
...