Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Anal Biochem ; 658: 114939, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36206846

ABSTRACT

The aim was to develop a reliable rapid reversed-phase high-performance liquid chromatography (RP-HPLC) method to simultaneously determine the main bovine milk protein fractions, including their genetic variants. Compared to the previous studies, our method is able to separate the main protein fractions within 20 min of total run time. The method validation consisted of testing repeatability, reproducibility linearity, repeatability, and accuracy. The procedure was developed using raw individual, bulk, and commercially available heat-treated cow milk samples. The RSD of peak areas ranged from 1.43 to 3.16% within analytical day and from 3.29 to 6.70% across analytical days. The method can be applied to investigate both raw and heat-treated milk samples.


Subject(s)
Milk Proteins , Milk , Animals , Female , Cattle , Milk Proteins/analysis , Milk/chemistry , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Chromatography, Reverse-Phase/methods
2.
Acta Vet Hung ; 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36037047

ABSTRACT

We analysed and monitored the major chemical composition of cow's bulk milk by Fourier transform mid-infrared (FT-MIR) spectroscopy over a 10-year period in the whole territory of Hungary. In addition, the two most important key parameters for milk quality assessment, total bacterial count (TBC) and somatic cell count (SCC) were also followed. Production parameters showed significant seasonal and yearly changes. The overall mean fat, protein, lactose and solids-non-fat (SNF) contents of cow's milk were 3.81%, 3.32%, 4.74% and 8.76%, respectively. A circannual variation was observed in the chemical composition and yield of milk components of samples examined between 2011 and 2020. Concerning milk fat, milk protein and SNF, the values were the lowest in summer and the highest in winter. In the case of lactose, the minimum values were measured in autumn and the maximum values in spring. An obvious trend of long-term elevation of lactose and SNF was found in the raw cow milk samples over the observed period. The overall mean TBC and SCC of cow's milk were 52 × 103 CFU ml-1 and 270 × 103 cells/ml, respectively. Although there were differences in the monthly average values, no seasonal cyclicality was observed.

3.
Sensors (Basel) ; 21(16)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34451028

ABSTRACT

A multiharmonic quartz crystal microbalance (QCM) has been applied to study the viscoelastic properties of the aptamer-based sensing layers at the surface of a QCM transducer covered by neutravidin following interaction with bacteria Listeria innocua. Addition of bacteria in the concentration range 5 × 103-106 CFU/mL resulted in a decrease of resonant frequency and in an increase of dissipation. The frequency decrease has been lower than one would expect considering the dimension of the bacteria. This can be caused by lower penetration depth of the acoustics wave (approximately 120 nm) in comparison with the thickness of the bacterial layer (approximately 500 nm). Addition of E. coli at the surface of neutravidin as well as aptamer layers did not result in significant changes in frequency and dissipation. Using the Kelvin-Voight model the analysis of the viscoelastic properties of the sensing layers was performed and several parameters such as penetration depth, Γ, viscosity coefficient, η, and shear modulus, µ, were determined following various modifications of QCM transducer. The penetration depth decreased following adsorption of the neutravidin layer, which is evidence of the formation of a rigid protein structure. This value did not change significantly following adsorption of aptamers and Listeria innocua. Viscosity coefficient was higher for the neutravidin layer in comparison with the naked QCM transducer in a buffer. However, a further increase of viscosity coefficient took place following attachment of aptamers suggesting their softer structure. The interaction of Listeria innocua with the aptamer layer resulted in slight decrease of viscosity coefficient. The shearing modulus increased for the neutravidin layer and decreased following aptamer adsorption, while a slight increase of µ was observed after the addition of Listeria innocua.


Subject(s)
Escherichia coli , Quartz Crystal Microbalance Techniques , Adsorption , Listeria , Surface Properties , Viscosity
4.
Braz J Microbiol ; 45(3): 1023-30, 2014.
Article in English | MEDLINE | ID: mdl-25477939

ABSTRACT

The purpose of this study was to test the suitability of Transgalactosylated oligosaccharides-mupirocin lithium salt (TOS-MUP) and MRS-clindamycin-ciprofloxacin (MRS-CC) agars, along with several other culture media, for selectively enumerating bifidobacteria and lactic acid bacteria (LAB) species commonly used to make fermented milks. Pure culture suspensions of a total of 13 dairy bacteria strains, belonging to eight species and five genera, were tested for growth capability under various incubation conditions. TOS-MUP agar was successfully used for the selective enumeration of both Bifidobacterium animalis subsp. lactis BB-12 and B. breve M-16 V. MRS-CC agar showed relatively good selectivity for Lactobacillus acidophilus, however, it also promoted the growth of Lb. casei strains. For this reason, MRS-CC agar can only be used as a selective medium for the enumeration of Lb. acidophilus if Lb. casei is not present in a product at levels similar to or exceeding those of Lb. acidophilus. Unlike bifidobacteria and coccus-shaped LAB, all the lactobacilli strains involved in this work were found to grow well in MRS pH 5.4 agar incubated under anaerobiosis at 37 °C for 72 h. Therefore, this method proved to be particularly suitable for the selective enumeration of Lactobacillus spp.


Subject(s)
Bacterial Load/methods , Bifidobacterium/isolation & purification , Culture Media/chemistry , Lactobacillus/isolation & purification , Hydrogen-Ion Concentration , Selection, Genetic , Temperature , Time Factors
5.
Braz. j. microbiol ; 45(3): 1023-1030, July-Sept. 2014. tab
Article in English | LILACS | ID: lil-727034

ABSTRACT

The purpose of this study was to test the suitability of Transgalactosylated oligosaccharides-mupirocin lithium salt (TOS-MUP) and MRS-clindamycin-ciprofloxacin (MRS-CC) agars, along with several other culture media, for selectively enumerating bifidobacteria and lactic acid bacteria (LAB) species commonly used to make fermented milks. Pure culture suspensions of a total of 13 dairy bacteria strains, belonging to eight species and five genera, were tested for growth capability under various incubation conditions. TOS-MUP agar was successfully used for the selective enumeration of both Bifidobacterium animalis subsp. lactis BB-12 and B. breve M-16 V. MRS-CC agar showed relatively good selectivity for Lactobacillus acidophilus, however, it also promoted the growth of Lb. casei strains. For this reason, MRS-CC agar can only be used as a selective medium for the enumeration of Lb. acidophilus if Lb. casei is not present in a product at levels similar to or exceeding those of Lb. acidophilus. Unlike bifidobacteria and coccus-shaped LAB, all the lactobacilli strains involved in this work were found to grow well in MRS pH 5.4 agar incubated under anaerobiosis at 37 °C for 72 h. Therefore, this method proved to be particularly suitable for the selective enumeration of Lactobacillus spp.


Subject(s)
Bacterial Load/methods , Bifidobacterium/isolation & purification , Culture Media/chemistry , Lactobacillus/isolation & purification , Hydrogen-Ion Concentration , Selection, Genetic , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...