Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformation ; 19(3): 260-265, 2023.
Article in English | MEDLINE | ID: mdl-37808374

ABSTRACT

Overexpression of the epidermal growth factor receptor (EGFR) has been shown to be a critical factor in tumor development and cancer progression. Although established EGFR inhibitors have been effective in the treatment of cancer, they are associated with several side effects. As a result, there is an urgent need to develop novel EGFR inhibitors that can effectively target the receptor while causing no adverse side effects. Here, the bioactive compounds of Glycyrrhiza glabra and established EGFR inhibitors have been screened against the EGFR catalytic site. The compounds LTS0058805, LTS0114552, LTS0128805, LTS0174203, LTS0007447, and LTS0164690 exhibited binding energies to the EGFR that were comparable to those of established EGFR inhibitors. Further, these hit compounds were observed to interact with critical residues of the EGFR, suggesting their potential as inhibitors of the receptor. In addition, these hits possess good drug-like properties and merit further exploration for their potential application in cancer management.

2.
Biotechnol Prog ; 39(5): e3363, 2023.
Article in English | MEDLINE | ID: mdl-37221947

ABSTRACT

Neural stem cells (NSCs) are multipotent stem cells with remarkable self-renewal potential and also unique competencies to differentiate into neurons, astrocytes, and oligodendrocytes (ODCs) and improve the cellular microenvironment. In addition, NSCs secret diversity of mediators, including neurotrophic factors (e.g., BDNF, NGF, GDNF, CNTF, and NT-3), pro-angiogenic mediators (e.g., FGF-2 and VEGF), and anti-inflammatory biomolecules. Thereby, NSCs transplantation has become a reasonable and effective treatment for various neurodegenerative disorders by their capacity to induce neurogenesis and vasculogenesis and dampen neuroinflammation and oxidative stress. Nonetheless, various drawbacks such as lower migration and survival and less differential capacity to a particular cell lineage concerning the disease pathogenesis hinder their application. Thus, genetic engineering of NSCs before transplantation is recently regarded as an innovative strategy to bypass these hurdles. Indeed, genetically modified NSCs could bring about more favored therapeutic influences post-transplantation in vivo, making them an excellent option for neurological disease therapy. This review for the first time offers a comprehensive review of the therapeutic capability of genetically modified NSCs rather than naïve NSCs in neurological disease beyond brain tumors and sheds light on the recent progress and prospect in this context.

SELECTION OF CITATIONS
SEARCH DETAIL
...