Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 641: 929-941, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36989819

ABSTRACT

Polymer-metal nanocomposites have widespread applications in biomedical fields such as imaging, catalysis, and drug delivery. These particles are characterized by combined organic and inorganic properties. Specifically, photothermal nanocomposites incorporating polymeric and plasmonic nanoparticles (NPs) have been designed for both triggered drug release and as imaging agents. However, the usual design of nanocomposites confers characteristic issues, among which are the decrease of optical properties and resulting low photothermal efficiency, as well as interactions with loaded drugs. Herein, we report the design of a core-satellite polymer-metal nanocomposite assembled by coiled-coil peptides and its superior photothermal efficiency compared to electrostatic-driven nanocomposites which is the standard design. We also found that the orientation of gold nanorods on the surface of polymeric NPs is of importance in the final photothermal efficiency and could be exploited for various applications. Our findings provide an alternative to current wrapping and electrostatic assembly of nanocomposites with the help of coiled-coil peptides and an improvement of the control over core-satellite assemblies with plasmonic NPs. It paves the way to highly versatile assemblies due to the nature of coiled-coil peptides to be easily modified and sensitive to pH or temperature.


Subject(s)
Nanocomposites , Nanoparticles , Polymers , Drug Delivery Systems , Peptides/chemistry , Gold/chemistry , Nanocomposites/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...