Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 5(24): 14796-14804, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32596617

ABSTRACT

The Ni(II)-based metallosupramolecular polymer with carboxylic acid groups (polyNi) was synthesized via a 1:1 complexation of Ni(II) salt with (4,4'-(9,9-dihexyl-9H-fluorene-2,7-diyl)bis(pyridine-2,6-dicarboxylic acid) for the first time. The divalent state of Ni(II) in the polymer was confirmed by the X-ray absorption fine structure analysis. Smooth loading of imidazole molecules into polyNi proceeded with the help of the carboxylic acid groups to form the imidazole-loaded polyNi (polyNi-Im). Thermogravimetric analysis of polyNi-Im revealed that approximately three imidazole molecules were incorporated per repeating unit of polyNi. The Fourier transform infrared spectrum of polyNi-Im showed a new peak at 3219 cm-1, which shows an ∼73 cm-1 enhancement to -N-H of pristine imidazole. The peak suggests the formation of an imidazolium cation in the polymer. Powder X-ray diffraction indicated no degradation of the polymer structure during the imidazole loading because the diffraction pattern of polyNi-Im was almost the same as that of polyNi except for the presence of peaks corresponding to the imidazole molecules. Interestingly, the scanning electron microscopy measurement showed a large morphological change to uniform spherical particles by loading imidazole to the polymer. PolyNi-Im exhibited good proton conductivity (1.05 × 10-2 mS/cm) at a high temperature (120 °C), which is around 7 orders of magnitude higher than that of pristine polyNi because of the proton conduction pathway formation along the polymer chains by the incorporated imidazole molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...